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1 External Python Modules and Packages

Python’s extensive standard library is powerful, but one of the major strengths of Python lies in its ability
to integrate with external modules and packages. These external packages significantly extend Python’s
capabilities, enabling it to be used in a wide range of domains such as data science, machine learning,
scientific computing, web development, and more.

In this section, we will focus on four of the most commonly used external modules for scientific calculations
and data analysis: NumPy, Pandas, Matplotlib, and Datetime. These libraries are essential in fields
such as atmospheric science, engineering, and data-driven research.

In Python, an external module is any module that is not part of Python’s standard library but can be
installed and imported into your environment. These modules are distributed via the Python Package Index
(PyPI) and can be installed using pip, Python’s package installer. External modules can range from simple
utility functions to complex systems with hundreds of thousands of lines of code.

To install these external modules, you can use the pip package manager. For example, to install NumPy,
Pandas, Matplotlib, and Datetime, you would use the following commands in your terminal or command
prompt:

1 pip install numpy

2 pip install pandas

3 pip install matplotlib
i pip install datetime

Once installed, you can import and use the modules in your Python script or Jupyter notebook with the
import statement:

I import numpy as np
2 import pandas as pd

import matplotlib.pyplot as plt
i import datetime




2 NumPy: A Package for Scientific Computing in Python

NumPy is one of the core libraries for numerical and scientific computing in Python. It provides a powerful
array object, as well as tools for performing mathematical and logical operations on these arrays. NumPy is
used extensively in fields such as data science, machine learning, physics, and finance. This section will cover
the key features and capabilities of NumPy, starting with an introduction to arrays and their operations.

2.1 Introduction to NumPy

NumPy (Numerical Python) is a powerful library in Python that provides support for large, multi-
dimensional arrays and matrices, along with a collection of mathematical functions to operate on these
arrays. It is the foundation of numerical computation in Python and is widely used for scientific, engineer-
ing, and data analysis tasks.

In this chapter, we will introduce NumPy, explain its purpose, how to install it, and how to create and
manipulate arrays. We will also explore how NumPy’s powerful features make it an essential tool for
scientific computing.

2.1.1 What is NumPy?

NumPy is a library that allows for efficient manipulation and computation on large datasets, especially
arrays. It provides an array object that is faster and more memory-efficient than Python’s built-in list data
structure. NumPy arrays are particularly useful when performing operations on large datasets due to their
compact storage and the ability to perform vectorized operations, which significantly improve performance.

e Array creation: You can create NumPy arrays from lists, tuples, and other data structures.

¢ Element-wise operations: You can perform operations like addition, multiplication, and subtraction
on arrays, and NumPy will handle them efficiently.

e Broadcasting: NumPy allows arrays of different shapes to be automatically aligned for element-wise
operations.

e Linear algebra: NumPy provides a range of linear algebra functions, such as matrix multiplication,
eigenvalue computation, and solving linear systems.

¢ Random number generation: NumPy offers robust random number generation tools for simulations
and statistical operations.

2.1.2 Installing NumPy

To use NumPy in your Python environment, you need to install it first. NumPy can be installed using the
Python package manager, pip, or through conda if you're using the Anaconda distribution.

e To install NumPy using pip, run the following command:

‘| pip install numpy

e To install NumPy using conda, run:

‘1 conda install numpy




After installing NumPy, you can import it in your Python script by running the following command:

I import numpy as np

np is the commonly used alias for NumPy, which helps shorten the code and makes it more readable.

2.1.3 Creating NumPy Arrays

NumPy arrays are the core data structure in NumPy. Unlike Python lists, which can contain elements of
different types, NumPy arrays are homogeneous, meaning they can only contain elements of the same data
type. Arrays in NumPy can be one-dimensional (1D), two-dimensional (2D), or multi-dimensional (ND).

Code 2.1

1 import numpy as np
2

3 # Creating a 1D array (vector) from a Python list
4+ arrayl = np.array([1, 2, 3, 4, 5])
5 print( , arrayl)

7 # Creating a 2D array (matriz) from a Python list of lists
s array2 = np.array([[1, 2, 31, [4, 5, 6], [7, 8, 911)
9 print( , array2)

1D Array: [1 2 3 4 5]
2D Array:

[f1 2 3]

[4 5 6]

[7 8 911

Explanation: - The first array arrayl is a 1-dimensional array (also called a vector), created from a Python
list [1,2,3,4,5]. - The second array array?2 is a 2-dimensional array (matrix), created from a list of lists,
representing a 3x3 matrix.

2.1.4 Array Attributes

Each NumPy array has several important attributes that describe the array’s structure and properties. The
most common attributes include:

e shape: A tuple representing the dimensions of the array. For example, a 2D array with 3 rows and 4
columns will have the shape (3, 4).

e size: The total number of elements in the array.

e dtype: The data type of the elements in the array (e.g., int64, float32).

e ndim: The number of dimensions of the array.

You can access these attributes for an array as shown below:

Code 2.2

1 # Array attridbutes

2 print( , arrayl.shape)

3 print( , arrayl.size)

:  print( , arrayl.dtype)

6 # For 2D array



print ( , array2.shape)
print ( , array2.size)
o print( , array2.dtype)

©

Shape of arrayl: (5,)

Size of arrayl: 5

Data type of arrayl: int64
Shape of array2: (3, 3)
Size of array2: 9

Data type of array2: int64

Explanation: - The shape attribute tells you the dimensions of the array. For array1, the shape is (5,)
because it is a 1D array with 5 elements. For array2, the shape is (3, 3), meaning it is a 2D array with 3
rows and 3 columns. - The size attribute returns the total number of elements in the array. For array2,
the size is 9, because it contains 9 elements (3 rows and 3 columns). - The dtype attribute returns the data
type of the elements in the array. In this case, both arrays have elements of type int64.

2.1.5 Basic Array Operations

NumPy allows for efficient mathematical operations between arrays. You can perform element-wise opera-
tions such as addition, subtraction, multiplication, and division directly on arrays.

Code 2.3

1 # Creating two arrays

2> array3 = np.array([1, 2, 3, 4, 5])
3 array4 = np.array([5, 4, 3, 2, 11)
1

5 # Adding the arrays
6 sum_array = array3 + arrayé
7 print( , sum_array)

9o # Subtracting the arrays
o diff_array = array3 - array4
print ( , diff_array)

I

13 # Multiplying the arrays

1+ prod_array = array3 * array4

15  print( , prod_array)

Sum of arrays: [6 6 6 6 6]
Difference of arrays: [-4 -2 0 2 4]
Product of arrays: [5 8 9 8 5]

Explanation: - In this example, we perform element-wise addition, subtraction, and multiplication between
array3 and array4. NumPy automatically handles the operations element by element, making it easier and
faster to work with large datasets.

2.2 Array Basics and Operations

In this chapter, we will explore the core operations that can be performed on NumPy arrays. NumPy arrays
are the building blocks of scientific computing in Python, and understanding how to manipulate them is
crucial for efficient data processing and analysis. We will cover how to index and slice arrays, perform basic
array operations, and understand array broadcasting and its power in optimizing array calculations.



2.2.1 Array Basics: Structure and Attributes

As discussed in Chapter 1, a NumPy array is a grid of values that are all of the same type. Each element in
a NumPy array is accessed by an index, and the array itself can have any number of dimensions (1D, 2D, or
higher).

To begin, let’s review the most important attributes of a NumPy array: - ndim: The number of dimensions
(axes) of the array. - shape: The dimensions of the array (e.g., (3, 3) for a 3x3 matrix). - size: The total
number of elements in the array. - dtype: The data type of the elements in the array.

We will use the following simple array for examples throughout the chapter:

Code 2.4

1 import numpy as np

RN

3 # Create a simple 2D array (matriz)
. array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 911)

6 # Print basic attridbutes of the array

7 print( , array.ndim)

s print( , array.shape)

o print( , array.size)

o print( , array.dtype)

Number of dimensions: 2

Shape of the array: (3, 3)
Size of the array: 9

Data type of the array: int64

Explanation: - The array is 2-dimensional (ndim = 2). - It has 3 rows and 3 columns (shape = (3, 3)),
and the total number of elements is 9 (size = 9). - The data type is int64 because the array contains
integer values.

2.2.2 Indexing and Slicing Arrays

NumPy arrays can be indexed and sliced in much the same way as Python lists, but they also support
multi-dimensional slicing.

2.2.3 Indexing in 1D Arrays

In a 1-dimensional array, elements can be accessed using simple indices.

Code 2.5

1 # Create a 1D array
> arrayld = np.array([10, 20, 30, 40, 50])

1 # Accessing elements by index
5 print( , arrayld[0]) # Indexzing starts at O
¢ print( , arrayld[-1]) # Negative index for reverse access

First element: 10
Last element: 50

Explanation: - The first element of the array is accessed using array1d[0]. - The last element can be
accessed using negative indexing arrayid[-1].



2.2.4 Slicing 1D Arrays

You can extract a portion of a 1D array using slicing. The general syntax for slicing is
array[start:stop:step].

Code 2.6

1 # Slicing a 1D array

> slice_array = arrayld[1:4] # Extract elements from index 1 to 3 (stop is ezclustive)
3 print( , slice_array)

Sliced array: [20 30 40]

Explanation: - The slice array1d[1:4] extracts elements starting from index 1 up to (but not including)
index 4.

2.2.5 Indexing and Slicing in 2D Arrays

In a 2D array, indexing becomes more interesting as you can select specific rows and columns or individual
elements.

Code 2.7

1 # Accessing specific elements in a 2D array
> print( , array [0, 1]) # Access element in first row,
second column

+ # Slicing 2D arrays
5 slice_2d = array[1:, 1:] # Slice starting from the second Tow and column
6 print( , slice_2d)

Element at position (0, 1): 2
Sliced 2D array:

[[5 6]

(8 911

Explanation: - array[0, 1] accesses the element in the first row and second column, which is 2. - The
slice array[1:, 1:] returns a sub-array that starts from the second row and second column.

2.2.6 Basic Array Operations

One of the most powerful features of NumPy is its ability to perform element-wise operations on arrays.
These operations are much faster than using loops and are automatically vectorized, meaning they operate
on entire arrays at once.

2.2.7 Array Addition and Subtraction

You can add or subtract arrays of the same shape element by element.

Code 2.8

1 # Element -wise addition and subtraction
2 array_a = np.array([1, 2, 3])

3 array_b = np.array([4, 5, 6])
1

sum_array = array_a + array_b
6 diff_array = array_a - array_b



g print( , sum_array)
o print( , diff_array)

Sum of arrays: [6 7 9]
Difference of arrays: [-3 -3 -3]

Explanation: - In array_a + array_b, NumPy performs element-wise addition between corresponding
elements of the two arrays. - Similarly, array_a - array_b subtracts the corresponding elements.

2.2.8 Array Multiplication and Division

Just like addition and subtraction, multiplication and division can be performed element-wise.

Code 2.9
1 # Element -wise multiplication and division
2 prod_array = array_a * array_b
3 div_array = array_a / array_b
1
print ( , prod_array)
6 print( , div_array)

Product of arrays: [ 4 10 18]
Division of arrays: [0.25 0.4 0.5]

Explanation: - The multiplication array_a * array_b performs element-wise multiplication of the arrays.
- Similarly, array_a / array_b divides the elements element-wise.

2.2.9 Broadcasting: Operations on Arrays of Different Shapes

Broadcasting is a powerful feature in NumPy that allows you to perform arithmetic operations on arrays of
different shapes. NumPy will automatically expand the smaller array to match the shape of the larger array,
following broadcasting rules.

Code 2.10

1 # Broadcasting a scalar to an array
> array_c = np.array([1, 2, 3, 4])

3 broadcasted_result = array_c + 5

1

print ( , broadcasted_result)

Broadcasted result: [6 7 8 9]

Explanation: - Here, the scalar 5 is broadcasted over the entire array array_c. The result is an array
where each element of array_c is incremented by 5.

2.3 Advanced Array Creation and Manipulation

In this chapter, we will explore more advanced techniques for creating and manipulating NumPy arrays.
We will cover special array creation functions, array reshaping, and stacking and splitting arrays. These
operations allow for more flexible and powerful handling of data in scientific computing tasks.



2.3.1 Creating Special Arrays

NumPy provides several functions to create arrays filled with specific values. These functions are useful
when you need to initialize arrays with known values, such as zeros, ones, or a range of numbers.

e np.zeros(): Creates an array filled with zeros.

e np.ones(): Creates an array filled with ones.

e np.eye(): Creates a 2D identity matrix.

e np.random.rand(): Creates an array with random values uniformly distributed between 0 and 1.

e np.random.randn(): Creates an array with random values from a standard normal distribution.

Let’s see how to use these functions.

Code 2.11
1 # Create an array of zeros
2 zeros_array = np.zeros((3, 4))
print ( , zeros_array)

5 # Create an array of ones
¢ ones_array = np.omnes((2, 5))
7 print( , ones_array)

o # Create a 2D identity matriz
lo identity_matrix = np.eye (4)
i1 print( , identity_matrix)

13 # Create an array with random values between 0 and 1
L« random_array = np.random.rand(3, 3)
15 print( , random_array)

17 # Create an array with random wvalues from a standard normal distribution
s random_normal_array = np.random.randn (3, 3)
1o print( , random_normal_array)

Array of zeros:
[[0. 0. 0. 0.]
(0. 0. 0. 0.]
[0. 0. 0. 0.]11]
Array of ones:
[f1. 1. 1. 1. 1.]
(1. 1. 1. 1. 1.11
Identity matrix:
[[1. 0. 0. 0.]

[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.11

Random array:

[[0.47643635 0.90911004 0.69766266]
[0.82911884 0.58077891 0.39543451]
[0.04677289 0.39766467 0.14966144]]

Random normal array:

[[ 1.71549009 -0.01443455 0.82721233]
[-1.70452535 0.73441019 -0.27543627]
[-0.2299295 0.32295704 -1.00116098]]

Explanation: - np.zeros((3, 4)) creates a 3x4 array filled with zeros. - np.ones((2, 5)) creates a 2x5
array filled with ones. - np.eye(4) creates a 4x4 identity matrix, which is useful in linear algebra operations.
- np.random.rand(3, 3) generates a 3x3 array of random numbers uniformly distributed between 0 and
1. - np.random.randn(3, 3) generates a 3x3 array of random numbers sampled from a standard normal
distribution (mean = 0, std = 1).



2.3.2 Reshaping Arrays

Reshaping arrays is an important operation when you need to change the dimensions of an array without
changing its data. NumPy provides several functions for reshaping arrays, such as reshape(), ravel (), and
flatten().

e reshape(): Changes the shape of an array without modifying its data.
e ravel (): Flattens a multi-dimensional array into a 1D array.

e flatten(): Similar to ravel (), but it returns a copy of the array.

Let’s see some examples of reshaping:

Code 2.12

1 # Create a 1D array

> arrayld = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
3
.  # Reshape the array into a 3z3 matrizc
reshaped_array = arrayld.reshape((3, 3))

6 print( , reshaped_array)

8 # Flatten the reshaped array into a 1D array
o flattened_array = reshaped_array.flatten()
o print( , flattened_array)

2 # Use ravel () to flatten the array (returns a flattened view)
I3 raveled_array = reshaped_array.ravel()
i1 print( , raveled_array)

Reshaped array:
[f1 2 3]
[4 5 6]
(7 8 911
Flattened array: [

12345678 9]
Raveled array: [1 2 3 4 5 6 7 8 9]

Explanation: - The reshape((3, 3)) function reshapes the 1D array into a 3x3 matrix. - The flatten()
method returns a flattened version of the array as a new 1D array, while ravel () also flattens the array but
returns a flattened view (not a copy).

2.3.3 Stacking and Splitting Arrays

You can combine multiple arrays into one using stacking, and you can split an array into multiple sub-arrays
using splitting functions.

e np.vstack(): Stacks arrays vertically (along rows).
e np.hstack(): Stacks arrays horizontally (along columns).

e np.split(): Splits an array into multiple sub-arrays.

Let’s look at how these functions work:

Code 2.13

10



# Create two 1D arrays
arrayl = np.array([1, 2, 3])
array2 = np.array([4, 5, 6])

[

oW

5 # Stack arrays wvertically
¢ vstacked_array = np.vstack((arrayl, array2))
7 print( , vstacked_array)

o # Stack arrays horizontally
Lo hstacked_array = np.hstack((arrayl, array2))
1 print( , hstacked_array)

# Split the stacked array into two equal parts
. split_array = np.split(vstacked_array, 2)
5 print( , split_array)

Vertically stacked array:

[[1 2 3]

[4 5 6]]
Horizontally stacked array: [1 2 3 4 5 6]
Split array:

[array ([[1, 2, 311), array([[4, 5, 611)1]

Explanation: - np.vstack() stacks the arrays vertically, creating a 2D array with array1 as the first row
and array2 as the second row. - np.hstack() stacks the arrays horizontally, resulting in a single 1D array
containing all elements from both arrays. - np.split () splits the vertically stacked array into two sub-arrays
along the first axis.

2.4 Array Math and Universal Functions (ufuncs)

In this chapter, we will dive into the core mathematical operations that can be performed on NumPy arrays.
NumPy provides a rich set of functions that enable efficient, element-wise operations on arrays, making it
ideal for numerical computations. These functions are known as universal functions or ufuncs. Ufuncs allow
you to perform arithmetic operations, mathematical functions, and aggregate operations on arrays quickly
and without explicit loops.

We will cover:

¢ Element-wise mathematical operations.
e Common mathematical functions such as sin, cos, log, and others.
e Aggregation functions like sum, mean, and std.

e Linear algebra operations such as dot product and matrix multiplication.

2.4.1 Element-wise Mathematical Operations

One of the most powerful features of NumPy is the ability to perform mathematical operations on entire
arrays, element by element. These operations are done automatically on each element of the array without
the need for explicit loops. NumPy’s ufuncs support a variety of arithmetic operations.

Code 2.14

# Array creation
> array_a = np.array([1, 2, 3, 4, 5])
array_b = np.array([5, 4, 3, 2, 1])

11



# Element -wise addition, subtraction, multiplication, and division

sum_result = array_a + array_b
diff_result = array_a - array_b
prod_result = array_a * array_b
div_result = array_a / array_b
print ( , sum_result)

print ( , diff_result)
print ( , prod_result)
print ( , div_result)

Sum: [6 6 6 6 6]

Difference: [-4 -2 0 2 4]
Product: [ 56 8 9 8 5]
Division: [0.2 0.5 1. 2. 5. ]

Explanation: - We created two arrays, array_a and array_b. Using NumPy’s ufuncs, we added, sub-
tracted, multiplied, and divided these arrays element-wise. These operations are performed on each corre-
sponding element in the arrays. - NumPy’s vectorization makes these operations much more efficient than
using a loop to iterate over the array elements manually.

2.4.2 Mathematical Functions (ufuncs)

NumPy provides a wide range of mathematical functions that are designed to operate element-wise on arrays.
These functions are referred to as universal functions or ufuncs. Some of the most commonly used ufuncs
include:

e np.sin() and np.cos(): Sine and cosine functions, applied element-wise.
e np.log(): Natural logarithm.

e np.exp(): Exponential function.

e np.sqrt(): Square root.

e np.abs(): Absolute value.

Let’s look at how these functions work on arrays.

Code 2.15

1

>
3
4

o

# Applying mathematical functions on an array
array = np.array([0, np.pi/2, np.pi, 3*np.pi/2])

sin_values = np.sin(array)
cos_values np.cos(array)
log_values np.log([1, 2, 3, 41)

print ( , sin_values)
print ( , cos_values)
print ( , log_values)

Sine values: [ 0.00000000e+00 1.00000000e+00 1.22464680e-16 -1.00000000e+00]
Cosine values: [ 1.00000000e+00 6.12323400e-17 -1.00000000e+00 -1.83697020e-16]
Logarithm values: [O. 0.69314718 1.09861229 1.38629436]

Explanation: - The np.sin() function computes the sine of each element in the array, and similarly,
np.cos() computes the cosine. - The np.log() function computes the natural logarithm (base e) of each
element in the input array. In this example, we used an array [1,2,3,4], and the results are the logarithms
of those numbers.

12




2.4.3 Aggregate Functions

NumPy provides a number of aggregation functions that allow you to compute statistics on arrays, such as
the sum, mean, standard deviation, and variance. These functions are applied to all elements in the array,
or along a specific axis for multi-dimensional arrays.

Common aggregate functions include:

e np.sum(): Sums all elements in the array.

e np.mean(): Computes the mean of the array.

e np.median(): Computes the median of the array.
e np.std(): Computes the standard deviation.

e np.var(): Computes the variance.

Let’s apply these functions to an array.

Code 2.16

1 # Array for aggregation
> array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 91)

3
4 # Apply aggregate functions

sum_result = np.sum(array)
¢ mean_result = np.mean(array)
7 median_result = np.median(array)

& std_result = np.std(array)

o print( , sum_result)

11 print( , mean_result)

1> print( , median_result)

1z print( , std_result)
Sum: 45
Mean: 5.0

Median: 5.0
Standard Deviation: 2.581988897471611

Explanation: - The np.sum() function computes the sum of all elements in the array. - The np.mean()
function computes the mean (average) of the array. - The np.median() function computes the median value
of the array, which is the middle value when the data is sorted. - The np.std() function computes the
standard deviation, which measures the spread of the numbers around the mean.

2.4.4 Linear Algebra Operations

NumPy also includes a wide variety of linear algebra operations, which are commonly used in scientific
computing. Some of the important linear algebra functions include:

e np.dot (): Computes the dot product of two arrays (matrices).

e np.matmul (): Matrix multiplication.

e np.linalg.inv(): Computes the inverse of a matrix.

e np.linalg.det(): Computes the determinant of a matrix.

13



e np.linalg.eig(): Computes the eigenvalues and eigenvectors of a matrix.

Let’s look at how to perform a simple dot product:

Code 2.17

1 # 2D Arrays (matrices)
> matrix_a = np.array([[1, 2], [3, 4]11)
matrix_b np.array ([[5, 61, [7, 811)

5 # Compute the dot product
6 dot_result = np.dot(matrix_a, matrix_b)
7 print( , dot_result)

Dot product of matrices:
[[19 22]
(43 50]]

Explanation: - In this example, we compute the dot product of two 2x2 matrices, matrix_a and matrix_b.
The result is another 2x2 matrix where each element is the result of multiplying corresponding elements and
summing the products.

2.5 Working with Multi-dimensional Arrays

In this chapter, we will explore how to work with multi-dimensional arrays, a core feature of NumPy. While
one-dimensional arrays are simple, real-world data is often stored in two or more dimensions. NumPy
provides efficient ways to handle and manipulate arrays of any dimensionality. We will cover how to create
multi-dimensional arrays, access and modify their elements, and perform basic operations on them.

Multi-dimensional arrays can represent matrices, tensors, images, and more, making them crucial for scientific
computing and data analysis.

2.5.1 Creating Multi-dimensional Arrays

In NumPy, multi-dimensional arrays are simply arrays that have more than one axis. A 2D array has two
axes, a 3D array has three, and so on. You can create multi-dimensional arrays just like one-dimensional
arrays, but by passing in lists of lists (for 2D arrays), or higher-level lists (for 3D arrays).

Let’s create some examples:

Code 2.18

I # Create a 2D array (matriz)
array_2d = np.array([[1, 2, 31, [4, 5, 61, [7, 8, 911)
print ( , array_2d)

N

5 # Create a 3D array (tensor)
¢ array_3d = np.array([[[1, 2], [3, 411, [[5, 61, [7, 8111)
7 print( , array_3d)

2D Array:
[([1 2 3]
(4 5 6]
(7 8 911
3D Array:
[Cr1 21
[3 411

[[5 6]
[7 8111

14



Explanation: - The first array, array_2d, is a 2D array, or matrix, with 3 rows and 3 columns. - The
second array, array_3d, is a 3D array (tensor), which has 2 blocks, each containing 2x2 matrices.

2.5.2 Accessing and Modifying Multi-dimensional Arrays
Accessing and modifying elements in multi-dimensional arrays works similarly to 1D arrays, but you need
to specify multiple indices—one for each axis.

For a 2D array, the first index specifies the row, and the second index specifies the column. For a 3D array,
the indices specify the block, row, and column.

Code 2.19

1 # Accessing spectific elements in a 2D array

2 element_2d = array_2d[1, 2] # Access element im second row, third column
print ( , element_2d)

5 # Accessing specific elements in a 3D array

¢ element_3d = array_3d[1, 0, 1] # Access element in second block, first row, second
column
7 print( , element_3d)

9 # Modifying an element in a 2D array
o array_2d[0, 1] = 99 # Modify the element at first row, second column
1 print( , array_2d)

Element at position (1, 2): 6
Element at position (1, 0, 1): 6
Modified 2D Array:

[[ 1 99 3]
[ 4 5 6]
[ 7 8 911

Explanation: - In the 2D array, array_2d[1, 2] accesses the element in the second row and third column.
- In the 3D array, array_3d[1, 0, 1] accesses the element in the second block, first row, and second column.
- We modified an element in the 2D array by directly assigning a new value to it using indexing.

2.5.3 Reshaping Multi-dimensional Arrays

Reshaping is a powerful feature that allows you to change the dimensions of an array without modifying its
data. This can be useful when you need to transform data for machine learning, mathematical modeling, or
visualizations.

You can reshape an array using the reshape() method, which takes the new shape as an argument. The
new shape must be compatible with the original size of the array.

Code 2.20

# Reshape a 1D array into a 2D array

array_1d = np.array([1, 2, 3, 4, 5, 6])

reshaped_array = array_1d.reshape((2, 3)) # Reshape into 2z3
print ( , reshaped_array)

N

o

6 # Reshape a 2D array into a 1D array
flattened_array = array_2d.reshape(-1) # Flatten the 2D array
g print( , flattened_array)

Reshaped Array:
[[1 2 3]
(4 5 6]]
Flattened Array: [ 1 99 3 4 5 6 7 8 9]
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Explanation: - The reshape((2, 3)) function reshapes the 1D array array-1d into a 2D array with
2 rows and 3 columns. - The reshape(-1) function flattens a multi-dimensional array into a 1D array.
The argument -1 tells NumPy to calculate the necessary dimensions automatically based on the number of
elements.

2.5.4 Stacking and Splitting Multi-dimensional Arrays

You can combine and split multi-dimensional arrays using stacking and splitting operations. Stacking arrays
allows you to combine them into one larger array, while splitting arrays lets you divide them into multiple
sub-arrays.

e np.vstack(): Stacks arrays vertically (along rows).

e np.hstack(): Stacks arrays horizontally (along columns).

e np.dstack(): Stacks arrays along the third axis (depth).

e np.split(): Splits arrays into multiple sub-arrays.

Let’s explore how to use these functions:

Code 2.21
1 # Stacking arrays wvertically (along rows)
> vstacked_array = np.vstack((array_2d, array_2d)) # Stack the same array twice

3 print( , vstacked_array)
1

5 # Stacking arrays horizontally (along columns)
¢ hstacked_array = np.hstack((array_2d, array_2d)) # Stack the same array twice
7 print( , hstacked_array)

o # Stacking arrays along the third azis (depth)

lo dstacked_array = np.dstack((array_2d, array_2d)) # Stack the same array twice along
depth

11 print( , dstacked_array)

Vertically Stacked Array:
[[1 2 3]
[4 5 6]
(7 8 9]
[1 2 3]
(4 5 6]
(7 8 911
Horizontally Stacked Array:
[[1 2312 3]
[4 5645 6]
(7 897 8 911
Depth Stacked Array:
[rrr 11
[2 2]
[3 311

[[4 4]
[5 5]
[6 611

ez 71
(8 8l
[9 9111

Explanation: - np.vstack() stacks the arrays vertically, adding new rows. - np.hstack() stacks arrays
horizontally, adding new columns. - np.dstack() stacks arrays along the depth (third axis), which creates
a 3D array.
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2.5.5 Advanced Indexing: Fancy Indexing and Boolean Indexing

In addition to standard indexing, NumPy also supports more advanced indexing techniques, including fancy
indexing and boolean indexing.

e Fancy indexing: Allows you to index arrays using an array of indices.

e Boolean indexing: Allows you to index an array using a boolean mask (True/False).

Code 2.22

1 # Fancy indezing
2> fancy_indexed_array = array_2d[[0, 2], [1, 2]] # Access elements at (0,1) and (2,2)
print ( , fancy_indexed_array)

# Boolean wndexzing

6 mask = array_2d > 5 # Create a boolean mask where elements > 5 are True
7 boolean_indexed_array = array_2d[mask] # Use the mask to index the array
s print( , boolean_indexed_array)

Fancy indexed array: [2 9]
Boolean indexed array: [6 7 8 9]

Explanation: - In fancy indexing, we can index specific elements using a list of indices. For example,
array_2d[[0, 2], [1, 2]] extracts elements at positions (0,1) and (2,2). - Boolean indexing allows you to
filter elements that satisfy a condition. In this case, we created a mask to select all elements greater than 5.

2.6 Chapter 7: NumPy in Data Science

NumPy plays a central role in data science workflows by providing efficient ways to handle large datasets,
perform numerical computations, and manipulate data for analysis. In this chapter, we will explore how
NumPy is used in data science for:

Handling large datasets.

Performing statistical analysis and aggregation.

Manipulating and transforming data.

Working with time-series data.

Handling missing or NaN values.

These skills are essential for tasks such as data cleaning, statistical modeling, and machine learning.

2.6.1 Handling Large Datasets with NumPy

One of the key reasons why NumPy is a go-to library for data science is its efficiency in handling large
datasets. NumPy arrays are significantly faster and more memory-efficient than Python lists, especially
when it comes to numerical data. NumPy’s ability to operate on entire arrays at once (vectorization) makes
it ideal for processing large amounts of data quickly.

For example, let’s create a large dataset and compute some basic statistics efficiently:

Code 2.23
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# Create a large dataset of 1 million Tandom numbers
large_data = np.random.rand (1000000)

# Calculate the mean and standard deviation of the dataset
5 mean = np.mean(large_data)
¢ std_dev = np.std(large_data)

s print( , mean)
9 print( , std_dev)

Mean of the dataset: 0.5000503212384874
Standard deviation of the dataset: 0.2886960536576174

Explanation: - We generated 1 million random numbers using np.random.rand(1000000). - We then
calculated the mean and standard deviation of the dataset using np.mean() and np.std(). These functions
operate efficiently on large arrays, making NumPy a powerful tool for handling large datasets in data science.

2.6.2 Performing Statistical Analysis with NumPy

NumPy provides a wide range of statistical functions to help you analyze data. Some of the most commonly
used functions include:

e np.mean(): Computes the mean (average) of the array.

e np.median(): Computes the median value of the array.

e np.var(): Computes the variance of the array.

e np.std(): Computes the standard deviation of the array.

e np.percentile(): Computes the nth percentile of the array.

e np.corrcoef (): Computes the correlation coefficient between two datasets.

Let’s compute some additional statistics for a given dataset.

Code 2.24

# Create a sample dataset
data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

1
2
3

+ # Compute the mean, median, variance, and standard deviation
5

mean_data = np.mean(data)
6 median_data = np.median(data)
7 variance_data = np.var(data)

s std_dev_data = np.std(data)

10 print( , mean_data)

1 print( , median_data)

12 print( , variance_data)

s print( , std_dev_data)
Mean: b

.5
Median: 5.5
Variance: 8.25
Standard Deviation: 2.8722813232690143

Explanation: - The mean of the data is 5.5, which is the average of the elements in the array. - The median
is also 5.5, which is the middle value of the sorted array. - The variance and standard deviation describe the
spread of the data.
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2.6.3 Working with Time-Series Data

Time-series data is a common type of data in fields like finance, economics, and climate science. NumPy
provides tools for manipulating and analyzing time-series data, especially when working with regularly spaced
data.

You can perform operations like resampling, calculating moving averages, and handling timestamps. Here’s
how to create and manipulate simple time-series data:

Code 2.25

1 # Create an array of dates (timestamps)
2> dates = np.arange( s , dtype= )
3

1+ # Create an array of random temperatures for each date

5 temperatures = np.random.randint(0, 35, size=10)

7 # Calculate the rolling average (moving average)

s window_size = 3

9 rolling_avg = np.convolve(temperatures, np.ones(window_size)/window_size, mode= )
16}

i print( , dates)

1> print( , temperatures)

13 print( , rolling_avg)

Dates: [’2020-01-01’ >2020-01-02’ ’2020-01-03’ ’2020-01-04’ >2020-01-05"
’2020-01-06> ’2020-01-07° ’2020-01-08° ’2020-01-09° ’2020-01-10°]

Temperatures: [16 14 4 12 30 28 12 25 16 30]

Rolling Average: [14.66666667 18.66666667 22. 23.33333333 23.33333333
22.33333333 22.33333333 23.66666667]

Explanation: - We generated an array of 10 dates using np.arange (), where each date is separated by one
day. - We also created an array of random temperatures for each date using np.random.randint(). - We
computed a rolling average (or moving average) of the temperatures using np. convolve (). The window_size
parameter specifies the number of data points to include in each rolling average.

2.6.4 Handling Missing Data (NaN values)

Missing or incomplete data is a common issue in real-world datasets. NumPy provides tools for identifying
and handling missing values (NaNs). The most commonly used functions for dealing with NaNs are:

e np.isnan(): Checks for NaN values in an array.

e np.nanmean(): Computes the mean, ignoring NaNs.

e np.nanstd(): Computes the standard deviation, ignoring NaNs.

Here’s how to handle missing values in a dataset:

Code 2.26

1 # Create a dataset with some missing values (NalNs)
> data_with_nans = np.array([1, 2, np.nan, 4, 5, np.nan, 7])

1+ # Check for NalN walues
5 mnan_mask = np.isnan(data_with_nans)
6 print( , nan_mask)

8 # Compute the mean ignoring NalNs
9 mean_no_nans = np.nanmean(data_with_nans)
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10 print( , mean_no_nans)

2 # Replace NalN values with 0
i3 data_no_nans = np.nan_to_num(data_with_nans, nan=0)
1+ print( , data_no_nans)

NaN values in the dataset: [False False True False False True False]
Mean ignoring NaNs: 3.6666666666666665
Data with NaNs replaced: [1. 2. 0. 4. 5. 0. 7.]

Explanation: - The np.isnan() function creates a boolean mask that identifies which elements in the array
are NaN. - np.nanmean() computes the mean of the array while ignoring NaN values. - np.nan_to_num()
replaces NaN values with a specified value, in this case, 0.
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3 Pandas: A Python Data Analysis Package

3.1 Introduction to Pandas

Pandas is an open-source data analysis and manipulation library built on top of NumPy. It provides data
structures such as Series and DataFrame that are specifically designed for working with structured data,
such as tables of data or time-series data. With Pandas, you can easily read, write, and manipulate large
datasets with just a few lines of code. In this chapter, we will introduce Pandas, its key features, and basic
operations that you will need to get started.

3.1.1 What is Pandas?

Pandas is a fast, powerful, flexible, and easy-to-use open-source data analysis and manipulation library. It
is built on top of the Python programming language and uses NumPy under the hood to provide efficient
data manipulation capabilities. Pandas introduces two primary data structures:

e Series: A one-dimensional labeled array, which can hold any data type (integer, float, string, etc.).

e DataFrame: A two-dimensional table of data with labeled axes (rows and columns), similar to an

Excel spreadsheet or SQL table.

These data structures allow for easy indexing, selection, filtering, and manipulation of data. Pandas provides
built-in functionality for handling missing data, merging datasets, and performing group-by operations,
making it an essential tool in any data scientist’s toolkit.

3.1.2 Installing Pandas

You can install Pandas via Python’s package manager, pip, or via the conda package manager if you're using
the Anaconda distribution.

e Using pip (Python’s package manager):

‘I pip install pandas

e Using conda (Anaconda package manager):

‘I conda install pandas

Once installed, you can import Pandas into your Python environment with the following command:

‘1 import pandas as pd

The alias pd is commonly used to refer to Pandas, making the code shorter and more readable.
3.1.3 Pandas Data Structures
The two main data structures in Pandas are Series and DataFrame.
e Series: A one-dimensional array-like object that can hold any data type and is indexed with labels.
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e DataFrame: A two-dimensional table consisting of rows and columns, where each column is a Series.
A DataFrame is essentially a collection of Series that share the same index.

Let’s explore both of these data structures in detail.

3.1.4 Creating a Pandas Series

A Pandas Series can be created from a list, NumPy array, dictionary, or scalar value. Below is an example
of creating a Series from a Python list.

Code 3.1

1 import pandas as pd
# Create a Pandas Series from a list
1 temperature_series = pd.Series([30, 35, 40, 38, 33])

5 print( N temperature_series)

Temperature Series:
0 30

35

40

38

33
dtype: int64

=W N e

Explanation: - The Series is indexed by default with integer labels (0, 1, 2, 3, 4). - The data type of the
elements in the Series is int64, as the Series contains integers.

You can also set custom indices for a Series:

Code 3.2

1 # Create a Pandas Serties with custom indices
2 temperature_series_with_index = pd.Series([30, 35, 40, 38, 33], index=[ s s
> s D

3 print( , temperature_series_with_index)

Temperature Series with custom index:

Mon 30
Tue 35
Wed 40
Thu 38
Fri 33

dtype: int64

Explanation: - We have now labeled the indices with the days of the week, making the Series easier to
understand.

3.1.5 Creating a Pandas DataFrame

A Pandas DataFrame is a two-dimensional table, like an Excel spreadsheet, where each column can be of a
different data type. Let’s create a DataFrame using a dictionary.

Code 3.3

1 # Create a DataFrame from a dictionary
2> data = {
3 [ B > > > ]:
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1 : [30, 35, 40, 38, 33],

5 . [60, 55, 65, 58, 62]

I

7 weather_df = pd.DataFrame(data)

s print( , weather_df)

Weather Station DataFrame:
Station Temperature Humidity

0 A 30 60
1 B 35 55
2 c 40 65
3 D 38 58
4 E 33 62
Explanation: - The DataFrame weather_df contains three columns: Station, Temperature, and

Humidity. - The index (0 to 4) is automatically generated, and each row corresponds to a different weather
station.

This is a made-up weather station dataset used for demonstration purposes, and it shows how to store and
manipulate tabular data with Pandas.

3.1.6 Accessing Data in a DataFrame

Once you have a DataFrame, you can easily access the columns and rows. Here’s how to access specific
columns and rows:

Code 3.4

1 # Access a single column

2 temperature_column = weather_df[ ]
print ( , temperature_column)

5 # Access multiple columns
¢ selected_columns = weather_df[[ , 1]
7 print( , selected_columns)

o # Access a row by index wusing .iloc
o first_row = weather_df.iloc[0]
i1 print( , first_row)

Temperature Column:
0 30

1 35

2 40

3 38

4 33

Name: Temperature, dtype: int64

Selected Columns (Station, Temperature):
Station Temperature

0 A 30
1 B 35
2 C 40
3 D 38
4 E 33

First Row:

Station A
Temperature 30
Humidity 60

Name: O, dtype: object
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Explanation: - To access a column, use df [’ColumnName’]. - To access multiple columns, pass a list of
column names inside double square brackets df [[?Column1’, ’Column2’]]. - To access a specific row, use
.iloc[] for integer-location-based indexing. In this case, weather_df.iloc[0] returns the first row.

3.2 Basic DataFrame Operations

In this chapter, we will dive into the core operations you will frequently perform on Pandas DataFrames.
DataFrames are the primary data structure in Pandas for working with structured data, and mastering
DataFrame operations is essential for any data science or data analysis workflow. We will cover how to
access and modify data, how to filter and select subsets, and how to use some of the most common Pandas
methods for summarizing and manipulating data.

3.2.1 Accessing and Viewing Data

Once you have a DataFrame, you can use several methods to access and view the data quickly. Here are
some of the most common methods:
e df.head() - Displays the first 5 rows of the DataFrame.
e df.tail() - Displays the last 5 rows of the DataFrame.
e df.info() - Provides a concise summary of the DataFrame, including the number of non-null entries.
e df.describe() - Provides a summary of statistics for numerical columns.

e df.columns - Returns the list of column names.

Let’s start by exploring these methods on our previously created weather station data:

Code 3.5

1 # Importing Pandas
import pandas as pd

NN

+ # Create a DataFrame for weather stations
5 data = {

6 ¢ 0 > > > > 1,
7 : [30, 35, 40, 38, 33],
8 : [60, 55, 65, 58, 621,

9 : [12, 15, 10, 20, 18]

o ¥

i weather_df = pd.DataFrame(data)

13 # Accessing DataFrame information

1+ print( , weather_df.head (3))

15 print( , weather_df.tail(3))

¢ print( , weather_df.info())

17 print( , weather_df .describe())
ls  print( , weather_df.columns)

First 3 rows:
Station Temperature Humidity WindSpeed

0 A 30 60 12
1 B 35 55 15
2 C 40 65 10

Last 3 rows:
Station Temperature Humidity WindSpeed
2 C 40 65 10
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3 D 38 58 20
4 E 33 62 18

DataFrame Summary:

<class ’pandas.core.frame.DataFrame’>
RangeIndex: 5 entries, 0 to 4
Data columns (total 4 columns):

# Column Non-Null Count Dtype
0 Station 5 non-null object
1 Temperature 5 non-null int64
2 Humidity 5 non-null int64
3 WindSpeed 5 non-null int64

dtypes: int64(3), object (1)
memory usage: 123.0+ bytes

Descriptive Statistics:
Temperature Humidity WindSpeed

count 5.000000 5.000000 5.000000
mean 35.200000 60.000000 15.000000
std 3.583333 3.162278 4.242641
min 30.000000 55.000000 10.000000
257% 33.000000 58.000000 12.000000
50% 35.000000 60.000000 15.000000
75% 38.000000 62.000000 18.000000
max 40.000000 65.000000 20.000000
Column names: Index([’Station’, ’Temperature’, ’Humidity’, ’WindSpeed’], dtype=’object’)

Explanation: - head() and tail() show the first and last rows, respectively, which is useful for quickly
inspecting the data. - info() provides useful information about the DataFrame, including the number of
non-null entries and the data types of each column. - describe () provides summary statistics for numerical
columns, including count, mean, standard deviation, min, max, and percentiles. - columns returns the names
of all the columns in the DataFrame.

3.2.2 Selecting Data

In Pandas, you can select data from a DataFrame using either column names or row indices. Here are the
common ways to select data:

df [’ ColumnName’] - Selects a single column.

df [[’Columnl’, ’Column2’]] - Selects multiple columns.

df .loc[row, column] - Selects data by labels (row and column names).

df .iloc[row, column] - Selects data by position (row and column indices).

Let’s explore how to select data from our weather DataFrame:

Code 3.6

1 # Select a single column

2 temperature_column = weather_df[ ]

3 print( , temperature_column)

4

5 # Select multiple columns

6 temperature_humidity = weather_df [[ s 11

7 print( , temperature_humidity)

o # Select data using .loc (by label)
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o row_2 = weather_df.loc[2] # Select the third row
i print( , TOow_2)

2
13 # Select data using .iloc (by position)

4 row_2_pos = weather_df .iloc [2] # Select the third row by position

5  print( , Tow_2_pos)

Temperature Column:
0 30

1 35

2 40

3 38

4 33

Name: Temperature, dtype: inté64

Selected Columns (Temperature, Humidity):
Temperature Humidity

0 30 60
1 35 55
2 40 65
3 38 58
4 33 62

Row 2 (by label):

Station C
Temperature 40
Humidity 65
WindSpeed 10

Name: 2, dtype: object

Row 2 (by position):

Station C
Temperature 40
Humidity 65
WindSpeed 10

Name: 2, dtype: object

Explanation: - Selecting a single column is as simple as using df [’ColumnName’]. - To select multiple
columns, pass a list of column names to df [[’Column1’, ’Column2’]]. - df.loc[] is used to select data
by row and column labels. - df.iloc[] is used for selection based on integer positions, useful when you
want to select by index rather than label.

3.2.3 Filtering Data

Filtering data based on conditions is one of the most common operations in data analysis. You can filter
rows based on a condition, such as selecting rows where the temperature is above a certain threshold.

Code 3.7
1 # Filter rows where temperature is greater than 35
2 high_temp_stations = weather_df [weather_df [ ] > 35]
print ( , high_temp_stations)

oW

5 # Filter rows based on multiple conditions

6 high_temp_and_humidity = weather_df [(weather_df[ ] > 35) &
(weather_df [ ] > 60)]
7 print( , high_temp_and_humidity)

Stations with temperature greater than 35:
Station Temperature Humidity WindSpeed

2 C 40 65 10

3 D 38 58 20

Stations with temperature > 35 and humidity > 60:
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Station Temperature Humidity WindSpeed
2 C 40 65 10

Explanation: - Filtering is done by applying a condition on one or more columns. In this example, we
filter the rows where the temperature is greater than 35. - You can also filter based on multiple conditions
by combining them with logical operators like & (and) and | (or).

3.2.4 Modifying Data

Modifying data is another essential operation when working with Pandas. You can modify the values in a
DataFrame by directly assigning values to a column or using conditional modifications.

Code 3.8

1 # Modify a specific column’s walues

> weather_df [ ] = weather_df [ 1 +1 # Increase temperature by 1
5 print( , weather_df)

1

5 # Modify wvalues based on a condition

6 weather_df.loc[weather_df[ ] == s ] = 31 # Set temperature for
Station A to 31
7 print( , weather_df)

Modified DataFrame:
Station Temperature Humidity WindSpeed

0 A 31 60 12
1 B 36 55 15
2 ¢ 41 65 10
3 D 39 58 20
4 E 34 62 18

DataFrame with Station A’s temperature modified:
Station Temperature Humidity WindSpeed

0 A 31 60 12
1 B 36 55 15
2 C 41 65 10
3 D 39 58 20
4 E 34 62 18

Explanation: - You can modify columns by directly assigning new values. For example, we added 1 to
every temperature value in the DataFrame. - You can also modify values based on a condition, using .loc[]
to target specific rows and columns.

3.3 Data Cleaning and Preprocessing

Data cleaning and preprocessing is a critical step in any data analysis workflow. In real-world datasets, it
is common to encounter missing values, incorrect data types, or unexpected values that need to be handled
before analysis. Pandas provides a rich set of functions to clean and preprocess data efficiently. This chapter
covers:

Handling missing data.

Replacing or updating values in the dataset.

Converting data types.

String manipulations for cleaning text data.
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By the end of this chapter, you will be able to handle common data cleaning challenges, making your data
ready for analysis or modeling.

3.3.1 Handling Missing Data

Missing or null values are common in many real-world datasets. Pandas provides several methods to handle
missing data, such as identifying missing values, filling them with default values, or dropping rows or columns
that contain them.

e df.isna() or df.isnull(): Checks for missing (NaN) values.

e df .dropna(): Drops rows or columns with missing values.

e df.fillna(): Fills missing values with a specified value or a method (e.g., forward fill).

Let’s look at how we can handle missing data in our weather station dataset.

Code 3.9

import pandas as pd
import numpy as np

3
+ # Create a weather DataFrame with missing wvalues

data = {
6 [ s > s s ]:
7 : [30, 35, np.nan, 38, 33],
8 : [60, np.nan, 65, 58, 62],
9 : [12, 15, 10, np.nan, 18]
e} }
l1 weather_df = pd.DataFrame(data)
2
13 # Checking for missing values
1+ print( , weather_df.isna())

lc # Dropping rows with missing values
17 df _dropped = weather_df.dropna()
Ls  print( , df_dropped)

o # Filling missing values with a spectific wvalue

S

df _filled = weather_df.fillmna ({ : weather_df [ ].mean (),
bo : weather_df [ ].mean (),
b3 weather_df [ ].mean()})
bs  print( , df _filled)

Missing values in DataFrame:
Station Temperature Humidity WindSpeed

0 False False False False
1 False False True False
2 False True False False
3 False False False True
4 False False False False

DataFrame after dropping rows with missing values:
Station Temperature Humidity WindSpeed

0 A 30 60.0 12.0

4 E 33 62.0 18.0

DataFrame after filling missing values:
Station Temperature Humidity WindSpeed

0 A 30.000000 60.0 12.0
1 B 35.000000 61.25 15.0
2 C 34.000000 65.0 11.25
3 D 38.000000 58.0 14.25
4 E 33.000000 62.0 18.0
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Explanation: - The isna() method checks for missing (NaN) values in the DataFrame and returns a
boolean DataFrame where True represents missing values. - dropna() removes rows that contain missing
values. You can also specify axis=1 to drop columns with missing values. - £illna() fills missing values
with a specified value or computed method (such as the column mean in this example).

3.3.2 Replacing Values

There are cases where you need to replace certain values in a DataFrame. This is often done when cleaning
or standardizing the data. You can use the replace() method for this purpose.

Code 3.10

I # Replacing spectific wvalues

2> weather_df_replaced = weather_df.replace ({ : {30: 32, 35: 36}})
print ( , weather_df_replaced)

DataFrame after replacing values in Temperature:
Station Temperature Humidity WindSpeed

0 A 32 60.0 12.0
1 B 36 61.25 15.0
2 C 34 65.0 11.25
3 D 38 58.0 14.25
4 E 33 62.0 18.0

Explanation: - The replace() method allows us to replace specific values in one or more columns. In this
case, we replaced the temperature values 30 and 35 with 32 and 36, respectively.

3.3.3 Converting Data Types

In many datasets, the data may not be in the correct format for analysis. Pandas makes it easy to convert
data to different types using the astype () method.

Code 3.11

1 # Converting data types

> weather_df [ ] = weather_df[ ].astype(float)
5 weather_df [ ] = weather_df[ ].astype( )

1+ print( , weather_df.dtypes)

Data types after conversion:

Station category
Temperature float64
Humidity float64
WindSpeed float64

dtype: object

Explanation: - We used astype() to convert the Temperature column to float64 and the Station
column to a categorical type. Converting data types can help improve memory efficiency and allow for more
appropriate analysis.

3.3.4 String Manipulations

Data cleaning often involves working with text data, which might need to be cleaned or standardized. Pandas
provides several powerful string manipulation methods through the str accessor. These methods allow you
to perform operations such as converting to lowercase, replacing text, or extracting parts of a string.

Code 3.12

29



# Create a column with station mnames in mized case
weather_df [ 1 =1 , , s ) ]

# Convert station mnames to lowercase
5 weather_df[ ] = weather_df[ ].str.lower ()
¢ print( , weather_df[ 1

8 # Replace part of the string
9 weather_df [ ] = weather_df [ ].str.replace( s )
lo  print( , weather_df [ 1)

Station names in lowercase:
0 alpha

1 beta

2 gamma

3 delta

4 epsilon

Name: StationName, dtype: object

Replaced ’alpha’ with ’omega’:
0 omega

1 beta

2 gamma

3 delta

4 epsilon

Name: StationName, dtype: object

Explanation: - The str.lower () method converts all characters in the string column to lowercase. - The
str.replace() method allows you to replace part of a string with another string.

3.4 Data Aggregation and Grouping

Data aggregation and grouping are fundamental operations in data analysis, as they allow you to summarize,
transform, and gain insights from datasets. The groupby () function in Pandas is a powerful tool for splitting
data into groups, applying functions to those groups, and then combining the results. This chapter will
introduce you to grouping data, performing aggregations, and working with pivot tables in Pandas.

3.4.1 Grouping Data with groupby()

The groupby() function in Pandas allows you to group data by one or more columns and then apply an
aggregation function to each group. This is useful for analyzing subsets of data within larger datasets.

Here is a simple example using the weather station data to group by station and calculate the average
temperature for each station.

Code 3.13

import pandas as pd

1
3 # Create a weather DataFrame
4+ data = {

5 [ s s , , , s s s 1,
6 . [30, 35, 32, 40, 36, 38, 33, 37, 39],

7 . [60, 55, 65, 70, 60, 75, 62, 58, 68]

I

o weather_df = pd.DataFrame(data)

i1 # Grouping by Station and calculating the mean of Temperature
2 grouped_by_station = weather_df.groupby( )L ] .mean ()
13 print( , grouped_by_station)
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Average Temperature by Station:
Station

A 31.666667

B 36.000000

C 39.000000

Name: Temperature, dtype: float64

Explanation: - We used the groupby (’Station’) method to group the DataFrame by the Station column.
- We then applied the mean () function to the Temperature column, which calculates the average temperature
for each group (station).

3.4.2 Multiple Aggregation Functions

You can apply multiple aggregation functions to grouped data by using the agg() method. This allows you
to calculate different statistics for each group, such as the mean, sum, standard deviation, and more.

Code 3.14

1 # Multiple aggregations using .agg ()

> aggregated_data = weather_df.groupby( ) .agg ({
3 L s ) 1,

:

5 1)

6 print( , aggregated_data)

Aggregated Data:

Temperature Humidity
mean max min mean
Station
A 31.666667 33 30 62.333333
B 36.000000 37 35 57.666667
C 39.000000 40 38 71.000000

Explanation: - The agg() method allows us to apply multiple aggregation functions to different columns.
In this case, we computed the mean, max, and min for the Temperature column, and the mean for the
Humidity column. - The result is a multi-level column header, which shows the different aggregations for
each column.

3.4.3 Filtering Groups Based on Aggregation Results

After grouping data and performing aggregations, you might want to filter the results based on certain
conditions, such as selecting groups with an average temperature above a certain threshold.

Code 3.15

1 # Filter groups with average temperature greater than 35
2 filtered_groups = grouped_by_station[grouped_by_station > 35]
print ( , filtered_groups)

Stations with average temperature > 35:

Station
B 36.000000
C 39.000000

Name: Temperature, dtype: float64

Explanation: - After grouping the data by station and calculating the average temperature, we filtered the
results to show only those stations with an average temperature greater than 35.
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3.4.4 Working with Pivot Tables

Pivot tables are another powerful tool for summarizing and analyzing data. A pivot table allows you to
summarize data in a matrix format, which is especially useful for multi-dimensional data analysis.

Code 3.16
1 # Create a pivot table to summarize temperature and humidity by Station
> pivot_table = weather_df.pivot_table(values=[ s 1,
index= , aggfunc= )
print ( , pivot_table)

Pivot Table:
Temperature Humidity

Station

A 31.666667 62.333333
B 36.000000 57.666667
C 39.000000 71.000000

Explanation: - The pivot_table() method creates a pivot table, where we specify the columns to summa-
rize (Temperature and Humidity) and the aggregation function (mean). - The result is a table that shows
the mean temperature and humidity for each station.

3.4.5 Handling Missing Data in Grouped Data

When performing group-by operations, you might encounter missing data in the groups. Pandas provides
options for handling missing data during aggregation, such as ignoring missing values or filling them with a
specified value.

Code 3.17

1 # Create a DataFrame with missing wvalues in grouped data

> data_with_missing = {

3 : 0 s s s s s s s s 1,

4 [30, 35, np.nan, 40, 36, 38, 33, np.nan, 39],
5 [60, 55, 65, np.nan, 60, 75, 62, 58, 68]

I

7 weather_df_missing = pd.DataFrame(data_with_missing)

9o # Group by Station and calculate the mean, filling NaNs with a default value
0 grouped_with_fill = weather_df_missing.groupby( ) .agg ({

1 : R

15 }).fillna (0)
14 print( , grouped_with_£ill)

Grouped Data with Missing Values Filled:
Temperature Humidity

Station

A 34.333333 60.0

B 35.666667 58.333333
C 39.000000 71.000000

Explanation: - In this example, we used the £illna(0) method to replace any missing values with 0 after
performing the group-by operation. - This can be helpful when dealing with incomplete data or ensuring
that missing values do not affect your analysis.
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3.5 Merging, Joining, and Concatenating Data

In real-world data analysis, it is common to work with data that is spread across multiple datasets. Pandas
provides powerful tools to combine datasets, making it easy to merge, join, or concatenate data. In this
chapter, we will cover the following methods:

e merge(): Combining two DataFrames based on common columns or indices.

e join(): Joining two DataFrames based on indices.

e concat(): Concatenating DataFrames along a particular axis.

These methods allow you to combine data from different sources into a single dataset, which is an essential
operation in data preparation for analysis.

3.5.1 Merging DataFrames with merge ()

The merge () function in Pandas is one of the most common ways to combine DataFrames. It works similarly
to SQL joins and allows you to combine data based on common columns (or indices) between two DataFrames.

You can perform different types of joins:

e Inner join: Returns only the rows with matching keys in both DataFrames (default join type).
e Left join: Returns all rows from the left DataFrame and the matched rows from the right DataFrame.
e Right join: Returns all rows from the right DataFrame and the matched rows from the left DataFrame.

e Outer join: Returns all rows from both DataFrames, with matching rows where available.

Let’s demonstrate merging two DataFrames based on a common column.

Code 3.18

1  import pandas as pd

3 # Create two DataFrames to merge
4+ dfl = pd.DataFrame ({

5 L , , 1,
6 : [30, 35, 40]
73

9 df2 = pd.DataFrame ({
: 0 s s 1,
i1 : [60, 55, 65]

2 1)

L3

14 # Merge the DataFrames using an inner join (default)

ls merged_df = pd.merge(dfi, df2, on= , how= )
6 print( , merged_df)

Merged DataFrame (Inner Join):
Station Temperature Humidity
A 30 60
1 B 35 55

Explanation: - In this example, we merged two DataFrames on the Station column using an inner join.
Only the rows where Station exists in both DataFrames (A and B) are included in the merged result. -
The resulting DataFrame contains the columns from both df1 and df2.
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3.5.2 Left and Right Joins

We can also perform left and right joins using the how parameter. Here’s an example using a left join:

Code 3.19

1 # Left join: keep all rows from dfl

2 left_joined_df = pd.merge(dfi, df2, on= , how= )
3 print( , left_joined_d4f)

Left Join Merged DataFrame:
Station Temperature Humidity

0 A 30 60.0
1 B 35 55.0
C 40 NaN

Explanation: - The left join keeps all rows from the left DataFrame (df1) and adds the matching rows
from the right DataFrame (df2). - In this case, Station C is not present in df2, so its Humidity value is

NaN.

3.5.3 Concatenating DataFrames with concat ()

The concat () function is used to concatenate DataFrames along a particular axis. You can stack DataFrames

vertically (along rows) or horizontally (along columns).

e Vertical Concatenation (axis=0): Stacks DataFrames on top of each other.

e Horizontal Concatenation (axis=1): Stacks DataFrames side by side.

Let’s see how vertical and horizontal concatenation works.

Code 3.20

1 # Create DataFrames to concatenate
2 df3 = pd.DataFrame ({

3 [ , 1,

A . [38, 341,

5 : [70, 721

6 1)

& # Concatenate wertically (stacking rows)
o concatenated_df_vertical = pd.concat([dfl, df3], axis=0)
o print( , concatenated_df_vertical)

2 # Concatenate horizontally (stacking columns)
15 concatenated_df_horizontal = pd.concat([dfl, df2], axis=1)
la  print( , concatenated_df_horizontal)

Concatenated DataFrame (Vertical):
Station Temperature Humidity

0 A 30 60
1 B 35 55
2 C 40 NaN
0 D 38 70
1 E 34 72

Concatenated DataFrame (Horizontal):
Station Temperature Station Humidity

0 A 30 A 60
1 B 35 B 55
C 40 C 65
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Explanation: - In the vertical concatenation (axis=0), the DataFrames df1 and df3 are stacked on top
of each other. The rows from df3 are appended to df1. - In the horizontal concatenation (axis=1), the
columns from df2 are added to the existing DataFrame df1, resulting in a wider table.

3.5.4 Joining DataFrames with join()

The join() function is used to join two DataFrames based on their indices. This is similar to SQL joins but
is index-based instead of column-based. The default join type is left join, which means that all rows from
the left DataFrame are kept, and matching rows from the right DataFrame are added.

Code 3.21

1 # Create a second DataFrame to join based on index
> df4 = pd.DataFrame ({
3 [ s > 1,
4 . [12, 15, 20]

5 }, index=[0, 1, 2])

7 # Join using the indecz
& joined_df = dfl.join(df4, on= )
o print( , joined_df)

Joined DataFrame (Index-based):
Station Temperature WindSpeed

0 A 30 12
1 B 35 15
2 C 40 20

Explanation: - The join() function joins the two DatakFrames based on their indices. In this case, we
used on=’Station’ to specify the join column, but join() uses the index of both DataFrames by default.

3.5.5 Handling Duplicate Rows During Merging

In some cases, merging or concatenating datasets can result in duplicate rows. You can remove duplicates
using the drop_duplicates() function.

Code 3.22

1 # Concatenate DataFrames with duplicate Tows

> duplicate_df = pd.concat([dfl, dfl], axis=0)

3 print( , duplicate_df)
4

o

# Remove duplicate Tows
6 cleaned_df = duplicate_df.drop_duplicates()
7 print( , cleaned_df)

Concatenated DataFrame with Duplicates:
Station Temperature Humidity

0 A 30 60
1 B 35 55
2 C 40 65
0 A 30 60
1 B 35 55
2 C 40 65

DataFrame after removing duplicates:
Station Temperature Humidity

0 A 30 60
1 B 35 55
2 C 40 65
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Explanation: - After concatenating df1 with itself, we have duplicate rows. The drop_duplicates()

method removes those duplicates, ensuring that each row is unique.

3.6 Time-Series Data Handling

Time-series data is a sequence of data points indexed in time order. Time-series analysis is fundamental
in many fields such as finance, climate science, economics, and stock market analysis. Pandas provides
powerful tools for working with time-series data, allowing you to perform various operations such as date-

time manipulation, resampling, and moving averages. This chapter will cover:

Working with datetime objects.

Date-time indexing.

Resampling time-series data.

Rolling statistics.

Shifting and lagging time-series data.

By the end of this chapter, you will have the necessary tools to handle, manipulate, and analyze time-series

data with Pandas.

3.6.1 Working with Datetime Objects

The first step in working with time-series data is ensuring that your data is in the correct datetime format.
Pandas has robust support for handling datetime objects, which allows for easy manipulation and analysis

of time-based data.
To convert a string or other type to a datetime object, you can use the pd.to_datetime() function.

Code 3.23

import pandas as pd

1

3 # Create a DataFrame with datetime strings

1 data = { : [ s s , 1,
: [30, 32, 35, 381}

6 df = pd.DataFrame(data)

8 # Convert the ’Date’ column to datetime
o df[ ] = pd.to_datetime (df [ 1
10 print( , df)

DataFrame with Datetime column:
Date Temperature

0 2024-01-01 30
1 2024-01-02 32
2 2024-01-03 35
3 2024-01-04 38

Explanation: - We used pd.to_datetime() to convert the Date column into a datetime object, allowing

us to perform time-based operations like sorting, filtering, and resampling.
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3.6.2 Date-Time Indexing

Once you have datetime objects, you can use them as the index of your DataFrame. This is particularly useful
for time-series data, as it allows you to access data by date, filter by date ranges, and perform time-based
operations.

Code 3.24

1 # Set the ’Date’ column as the index

> df.set_index( , inplace=True)

3 print( , df)

4

5 # Access data by date Tange

¢ subset = df[ : ]

7 print( , subset)

DataFrame with Date-Time Index:

Temperature
Date
2024-01-01 30
2024-01-02 32
2024-01-03 35
2024-01-04 38

Subset of data from 2024-01-02 to 2024-01-03:

Temperature
Date
2024-01-02 32
2024-01-03 35

Explanation: - By setting the Date column as the index, we can access data using date ranges. The subset
we retrieved contains only the rows for the dates from 2024-01-02 to 2024-01-03.

3.6.3 Resampling Time-Series Data

Resampling is a common operation for time-series data. It allows you to change the frequency of your data,
either by downsampling (reducing the frequency) or upsampling (increasing the frequency). The resample ()
function in Pandas is used for this purpose.

You can specify the desired frequency using a string like ’D’ for daily, M’ for monthly, or *H’ for hourly.
You can then apply aggregation functions such as mean(), sum(), or median() to the resampled data.

Code 3.25

# Resample data to a datly frequency and calculate the mean
df _resampled = df.resample( ) .mean ()
print ( , df _resampled)

S

# Resample data to a monthly frequency
¢ df_resampled_monthly = df.resample( ) .mean ()
7 print( , df _resampled_monthly)

Resampled Data (Daily Frequency):

Temperature
Date
2024-01-01 30
2024-01-02 32
2024-01-03 35
2024-01-04 38

Resampled Data (Monthly Frequency):
Temperature
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Date
2024-01-31 33.75

Explanation: - The data is resampled to a daily frequency using resample(’D’) and aggregated with
mean (). Since we only have daily data in the example, the daily resampled data is the same as the original
data. - The monthly resampling (resample(’M’)) gives the mean temperature for the entire month, which
is 33.75 in this case.

3.6.4 Rolling Statistics

Rolling statistics, such as rolling averages or rolling sums, are commonly used to smooth time-series data or
capture trends over a moving window. Pandas provides a rolling() method to compute these statistics.

You can specify the window size (the number of previous data points to include) and the aggregation function
to apply (e.g., mean() or sum()).

Code 3.26

1 # Calculate the rolling mean with a window of 2

2 df[ ] = af[ ].rolling(window=2) .mean ()
3 print( , df)

DataFrame with Rolling Mean:
Temperature RollingMean

Date

2024-01-01 30 NaN
2024-01-02 32 31.000000
2024-01-03 35 33.500000
2024-01-04 38 36.500000

Explanation: - We calculated the rolling mean with a window size of 2. The first value of the rolling mean
is NaN because there is not enough data before it. - The rolling mean for each subsequent day is the average
of the current temperature and the previous day’s temperature.

3.6.5 Shifting and Lagging Time-Series Data

Shifting and lagging operations are useful for calculating changes or differences between data points over
time. The shift () function allows you to shift data forward or backward by a specified number of periods.

Code 3.27

1 # Shift data by 1 period (lagging by 1 day)

> df [ 1 = daf[ 1.shift (1)
3 print( , df)

DataFrame with Lagged Temperature:
Temperature RollingMean LaggedTemperature

Date

2024-01-01 30 NaN NaN
2024-01-02 32 31.000000 30.0
2024-01-03 35 33.500000 32.0
2024-01-04 38 36.500000 35.0

Explanation: - We used shift (1) to shift the temperature values by one period (one day in this case),
which helps calculate the difference between the current value and the previous day’s value.
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3.7 Advanced Indexing and Multilndex

In Pandas, indexing is an essential tool for data manipulation and analysis. As datasets grow in complexity,
the need for more sophisticated indexing techniques arises. Multi-level indexing, or Multilndex, is a powerful
feature in Pandas that allows you to handle and analyze hierarchical or multi-dimensional data. This chapter
will cover:

e Introduction to Multilndex.

e Creating Multilndex objects.

e Accessing data with Multilndex.

e Resetting and setting indexes.

Stacking and unstacking Multilndex data.

By the end of this chapter, you will be able to use Multilndex to manipulate and analyze more complex
datasets.

3.7.1 Introduction to MultiIndex

A Multilndex is a hierarchical index that allows you to store multiple index levels in a DataFrame or Series.
This is particularly useful when you have multi-dimensional data or data that naturally fits into a hierarchical
structure. Multilndex makes it easier to access data in higher dimensions, similar to how you might work
with multi-dimensional arrays in other libraries like NumPy.

Let’s start by creating a simple Multilndex.
Code 3.28

1 import pandas as pd

3 # Create a MultiIndexz from tuples
4+ index = pd.Multilndex.from_tuples ([( , 2024), ( , 2024), ( , 2025), ( , 2025)1,
5 names=[ s D

7 # Create a DataFrame with MultiIndez
s df = pd.DataFrame ({ : [30, 35, 32, 36]}, index=index)
9 print( , df)

DataFrame with MultiIndex:

Temperature
Station Year
A 2024 30
B 2024 35
A 2025 32
B 2025 36

Explanation: - The DataFrame is indexed by two levels: Station and Year. - The index is created using
the MultiIndex.from_tuples() function, where each tuple represents a combination of Station and Year.
- The names of the index levels are provided as [’Station’, ’Year’].

3.7.2 Accessing Data with Multilndex

Once you have a Multilndex, you can access data using both levels of the index. You can use the .loc[]
method for label-based indexing, or .xs() for cross-section extraction.
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Code 3.29

1 # Accessing data using .loc/[] with MultiIndez
2 temperature_station_a_2024 = df.loc([( , 2024)]
print ( , temperature_station_a_2024)

5 # Using .zs() to extract a cross-section of data for all stations in 2024
6 cross_section_2024 = df.xs (2024, level= )
7 print( , cross_section_2024)

Temperature for Station A in 2024:
Temperature 30
Name: (A, 2024), dtype: int64

Cross-section for Year 2024:

Temperature
Station
A 30
B 35

Explanation: - The .1loc[] method allows you to access data based on both index levels. In this example,
we accessed the temperature for Station A in the year 2024. - The .xs() method is used to extract a
cross-section of data. Here, we extracted the data for all stations in the year 2024.

3.7.3 Resetting and Setting Indexes

You can easily reset the index of a DataFrame and convert it back into columns. The reset_index () function
is used to reset the index, and set_index () is used to create a new index from columns.

Code 3.30

1 # Reset the index of the DataFrame

> df_reset = df.reset_index ()

3 print( , df _reset)

4

5 # Set the index of the DataFrame using columns

s df_set = df_reset.set_index ([ , 1

7 print( , df _set)

DataFrame after resetting the index:
Station Year Temperature

0 A 2024 30
1 B 2024 35
2 A 2025 32
3 B 2025 36

DataFrame after setting the index back:

Temperature
Station Year
A 2024 30
B 2024 35
A 2025 32
B 2025 36

Explanation: - The reset_index () method moves the current index back into columns, and the DataFrame
is no longer indexed by Station and Year. - We then use set_index () to set the Station and Year columns
as the index again.
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3.7.4 Stacking and Unstacking Data

The stack() and unstack() methods are used to reshape data with Multilndex. stack() compresses
the columns into rows (i.e., pivoting the columns), and unstack() does the opposite, converting rows into
columns.

Code 3.31

N

# Stack the DataFrame (move columns into rows)
stacked_df = df.stack()
print ( , stacked_df)

# Unstack the DataFrame (move rows 4nto columns)
unstacked_df = stacked_df.unstack()
print ( , unstacked_df)

Stacked DataFrame:
Station Year

A 2024 Temperature 30
B 2024 Temperature 35
A 2025 Temperature 32
B 2025 Temperature 36

dtype: int64

Unstacked DataFrame:

Temperature
Station Year
A 2024 30
B 2024 35
A 2025 32
B 2025 36

Explanation: - The stack() method converts the columns of the DataFrame into rows, creating a Series
with a hierarchical index. - The unstack() method reverses the stacking process, converting the rows back
into columns.

3.7.5 Sorting with MultiIndex

Sorting data with a Multilndex is straightforward using the sort_index() method. You can sort by one or
more levels of the index.

Code 3.32

1
2
3

# Sort the DataFrame by indez (both levels)
sorted_df = df.sort_index ()
print ( , sorted_df)

DataFrame after sorting by index:

Temperature
Station Year
A 2024 30
A 2025 32
B 2024 35
B 2025 36

Explanation: - The sort_index() method sorts the DataFrame based on its index. In this case, it sorts
first by the Station level and then by the Year level.
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3.8 Working with Large Datasets

In real-world data analysis, it’s common to work with large datasets that may not fit entirely in memory.
Pandas provides a variety of tools to efficiently handle large datasets, enabling you to perform operations
such as reading files in chunks, optimizing memory usage, and processing large datasets more efficiently.
This chapter will cover:

e Reading large datasets in chunks.

e Optimizing memory usage with specific data types.

Using Dask for out-of-core computations.

Parallel processing techniques for large datasets.
e Performance optimization strategies.

By the end of this chapter, you will be equipped with the necessary tools to handle large datasets and work
with data efficiently, even when it exceeds your system’s memory limits.

3.8.1 Reading Large Datasets in Chunks

One of the most common approaches for handling large datasets is to read them in smaller chunks. Pandas’
read_csv() function has a chunksize parameter that allows you to read a large CSV file in chunks and
process each chunk iteratively.

Let’s explore how to read a large CSV file in chunks and process the data efficiently.
Code 3.33

1 import pandas as pd
# Ezample: Read large CSV in chunks
i chunksize = 10000 # Number of rows per chunk
5 for chunk in pd.read_csv( , chunksize=chunksize):
6 print (chunk.head()) # Process each chunk here

Explanation: - The chunksize parameter specifies the number of rows to read at a time. By iterating over
the chunks, you can process large datasets without loading them entirely into memory. - You can perform
operations such as data cleaning, filtering, and aggregation on each chunk before moving to the next one.

3.8.2 Optimizing Memory Usage with Specific Data Types

Pandas allows you to specify data types when reading a CSV file, which can help reduce memory usage,
especially with large datasets. By default, Pandas infers data types, but you can optimize this by explicitly
setting data types using the dtype parameter.

Code 3.34

1 # Optimize memory wusage by specifying data types
> dtypes = {

1 E

7}
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o # Read the CSV with optimized data types
lo df_optimized = pd.read_csv( , dtype=dtypes)
11 print( , df _optimized.dtypes)

Data types after optimization:

Station category
Temperature float32
Humidity float32
WindSpeed float32

dtype: object

Explanation: - In this example, we optimized the memory usage by explicitly setting the data types for
each column. The Station column is set to category, which is more memory-efficient for columns with a
limited number of unique values. - The float32 data type is used for numerical columns to reduce memory
usage compared to the default float64.

3.8.3 Using Dask for Out-of-Core Computations

For extremely large datasets that cannot fit in memory, Dask is an excellent option. Dask is a parallel
computing library that integrates seamlessly with Pandas and provides out-of-core computations on larger-
than-memory datasets. Dask allows you to work with Pandas-like DataFrames but operates on chunks of
data distributed across multiple cores or machines.

Code 3.35

import dask.dataframe as dd

dask_df = dd.read_csv( )

1

3 # Read large CSV usting Dask (out-of-core computation)

4

5  print( , dask_df.head()) # Dask performs lazy evaluation

Explanation: - dask.dataframe.read _csv() is similar to Pandas’ read_csv() but it operates lazily and
allows for out-of-core computations on large datasets. - Dask operates by splitting the data into smaller
partitions and processing them in parallel, making it a great choice for large-scale datasets.

3.8.4 Parallel Processing Techniques

In addition to Dask, another way to speed up the processing of large datasets is by utilizing parallel pro-
cessing. Pandas can be combined with libraries like joblib or concurrent.futures to perform parallel
operations across multiple CPU cores.

Here’s an example of how to use joblib to parallelize data processing tasks.

Code 3.36

1 from joblib import Parallel, delayed

# Define a function to process each chunk
. def process_chunk(chunk):
5 return chunk[ ] .mean ()

7 # Read large data in chunks and process in parallel

s chunksize = 10000

o results = Parallel(n_jobs=-1) (delayed(process_chunk) (chunk) for chunk in
pd.read_csv( , chunksize=chunksize))

IO

11 # Aggregate results

1> average_temperature = sum(results) / len(results)

13 print( , average_temperature)
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Explanation: - We used joblib.Parallel() to parallelize the processing of chunks. The n_jobs=-1
parameter tells joblib to use all available CPU cores. - The function process_chunk() computes the mean
temperature for each chunk, and the results are aggregated to get the overall average temperature.

3.8.5 Performance Optimization Strategies

When working with large datasets, performance optimization becomes crucial. Here are some strategies to
improve performance in Pandas:

e Use Efficient Data Types: Always use the most efficient data types for your columns. For example,
use category for categorical variables and float32 for numerical columns.

e Vectorization: Avoid using for loops in favor of vectorized operations in Pandas. Vectorized oper-
ations are faster and more memory-efficient because they apply functions to entire columns or arrays
at once.

e Use eval() and query(): Pandas’ eval() and query() functions allow you to perform operations
on large datasets efficiently by using optimized evaluation strategies.

e Use Chunking for Large Files: When dealing with very large files, read them in smaller chunks
rather than loading the entire file into memory at once.

Code 3.37

1 # Exzample of wectorized operation (faster than a for loop)

o df[ ] = af[ ] * 1.1 # Scale wind speed by 10/
3 print( , df)

Explanation: - In the example, we applied a vectorized operation to scale the WindSpeed column by 10
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