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Abstract: In this study, we developed a XGBoost-based algorithm to downscale 2 km-resolution land
surface temperature (LST) data from the GOES satellite to a finer 70 m resolution, using ancillary
variables including NDVI, NDBI, and DEM. This method demonstrated a superior performance over
the conventional TsHARP technique, achieving a reduced RMSE of 1.90 ◦C, compared to 2.51 ◦C
with TsHARP. Our approach utilizes the geostationary GOES satellite data alongside high-resolution
ECOSTRESS data, enabling hourly LST downscaling to 70 m—a significant advancement over
previous methodologies that typically measure LST only once daily. Applying these high-resolution
LST data, we examined the hottest days in Chicago and their correlation with ethnic inequality. Our
analysis indicated that Hispanic/Latino communities endure the highest LSTs, with a maximum LST
that is 1.5 ◦C higher in blocks predominantly inhabited by Hispanic/Latino residents compared to
those predominantly occupied by White residents. This study highlights the intersection of urban
development, ethnic inequality, and environmental inequities, emphasizing the need for targeted
urban planning to mitigate these disparities. The enhanced spatial and temporal resolution of our
LST data provides deeper insights into diurnal temperature variations, crucial for understanding and
addressing the urban heat distribution and its impact on vulnerable communities.

Keywords: land surface temperature; downscaling; GOES-R; ECOSTRESS; climate justice; environ-
mental justice; inequality

1. Introduction

Remotely sensed estimates of land surface temperature (LST) in urban areas are
a critical metric for evaluating urban climate conditions, particularly in examining the
surface urban heat island effect and understanding the influence of urban climate on
societal and environmental aspects [1–4]. The high-resolution mapping of LST in urban
areas has emerged as a vital tool for assessing environmental justice [5,6] and varying heat
exposures at the neighborhood scale [7,8], as LST is highly sensitive to urban elements such
as land covers [9,10] and vegetation [11–13]. However, a detailed estimation of LST with a
neighborhood-scale spatial resolution and temporal resolution to capture diurnal cycles
and extreme events are lacking, underscoring a gap in how high LST in cities varies with
socioeconomic factors.

Polar-orbiting satellites such as MODIS [14–17] or the Landsat series [2,12,18] are
extensively used for detailed urban LST estimates due to their high spatial resolution (up to
60 m). However, their primary limitation is that they are designed with a fixed return time—
that they revisit the same region on Earth at fixed hour of the day—restricting continuous
LST monitoring or diurnal cycle analysis. ECOSTRESS, mounted on the International Space
Station (ISS), has the potential to address this by revisiting locations irregularly, offering
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insights into the diurnal characteristics of LST while maintaining the high spatial resolution
of 70 m. Although it cannot provide continuous estimates and has long return periods,
it has been widely utilized for LST analysis [19–23]. For example, it has been utilized
for analyzing the diurnal dynamics of surface urban heat island [24], impact of urban
landscapes on LST [25], and various factors affecting LST [26].

On the other hand, geostationary satellites, especially the GOES-R series, stand out
for their ability to continuously monitor a fixed point on Earth, making them ideal for the
sub-hourly LST data capture over North America, despite their lower spatial resolution
(2 km) compared to polar-orbiting satellites. This capability has led to their increasing use
in urban LST monitoring [27–30].

To maximize the benefits of these varied satellite systems, previous studies have
presented methods to improve the spatial resolution of LST estimates through downscaling.
This process often involves using statistical method with ancillary parameters, such as the
Normalized Difference Vegetation Index (NDVI) [19,31,32], available at finer resolutions.
One prominent example using NDVI for downscaling is the TsHARP approach [32] which
utilize NDVI to establish a linear relationship with LST for downscaling. However, in
diverse urban environments, these NDVI-based methods can be subject to large errors due
to the influence of other factors like elevation and urban structures [33–35]. Thus, other
ancillary parameters such as the Normalized Difference Built-up Index (NDBI), and Digital
Elevation Models (DEM) [36,37] are often used to address this limitation.

Additionally, more sophisticated statistical methods incorporating multiple predic-
tor variables and non-linear relationships have been explored. These include machine-
learning and deep-learning techniques such as Random Forest [12,38], Artificial Neural
Networks [39,40], and Extreme Gradient Boosting (XGBoost) [41]. These methods are par-
ticularly effective in complex spatial data analysis due to their ability to capture non-linear
interactions and handle multicollinearity among predictors. However, they also present
challenges, including the potential for overfitting and increased computation demands.
Thus, the detailed pre-processing and robust tuning of the data and models are essential
during the development phase.

One of the primary motivations to generate downscaled LST products is to develop
a better understanding of how exposure to heat—the primary cause of weather-related
mortality [42]—varies with factors such as ethnicity and economic status. Demographic
gradients in cities are steep—often varying significantly block to block—and, thus, data at
this resolution are needed. The unequal exposure to LST among different socioeconomic
groups has recently been the focus of multiple studies [5,6,43–45]. Especially, environmental
inequality from an ethnic perspective has been a concern, especially in large cities in the
US [46,47]. It is critical to document the exposure of minoritized and/or marginalized
groups to higher temperatures because these groups often lack the resources and domestic
infrastructure to mitigate the impact of heat. This disparity makes existing socioeconomic
inequalities more significant and poses risks to public health, particularly during heat
waves and extreme weather events. Additionally, the vulnerability of these communities to
the urban heat island effect is further intensified by their limited access to cooling facilities
and green spaces, a situation exemplified in documented cases from Chicago [48,49].

In this study, our first objective is to develop an XGBoost-based downscaling method
for LST and compare its performance with the conventional TsHARP model, specifically
focusing on the Chicago region in the summertime of 2019–2023. Secondly, our study
extends the outcome of the downscaling to illustrate practical applications of an hourly
70 m LST for a major urban center. We demonstrate how these downscaled LST datasets can
be effectively utilized to classify ethnic inequalities associated with exposure to high LST.

2. Data
2.1. LST Data

In this study, LST data come from two primary sources. The first is the LST estimates
from GOES-16, 17, and 18 satellites, hereafter collectively referred to as GOES [50]. These
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estimates, which serve as the basis for our downscaling, have a spatial resolution of 2 km
and provide hourly estimates. For our analysis, we extract data specific to the urban,
suburban, and preurban regions around Chicago during the summer months (June, July,
and August) spanning 5 years from 2019 to 2023. The specific study region and its local
climate zones [51] are depicted in Figure 1. Previous studies have reported error margin of
GOES LST to be below 2 K [52,53].
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Figure 1. Location and land use characteristics of the study area. (a) A red box on the map of the US
highlights the study region. (b) Local climate zones within the study area, providing an overview of
different land use patterns.

The second source of LST data in our study is from ECOSTRESS LST estimates onboard
the International Space Station (ISS). ECOSTRESS has a finer spatial resolution of 70 m but
has an irregular revisit period for the Chicago area. Additionally, due to the unique orbit
of the ISS, not all parts of Chicago are observed in each pass. Therefore, we have utilized
ECOSTRESS data whenever it captures part or all our study region within its scene. Over
the five-year span of our study period, this approach yielded a total of 221 scenes. Previous
studies have reported a mean absolute error of the ECOSTRESS LST product to be below
0.5 K [54].

One inherent limitation of satellite-based LST estimates is the inability to measure
LST under a cloud cover. To address this issue, we have utilized a cloud mask and
quality control products from both GOES and ECOSTRESS, using only a ‘best-quality’ LST
product—with a minimal cloud edge and shadow effect. By applying these cloud masks,
we effectively filter out any LST data obscured by clouds. Consequently, the LST data
we use for both GOES and ECOSTRESS in our study can be considered as cloud-free LST
estimates. The average LST for ECOSTRESS and GOES for the entire study period can be
found in Figure 2a,b.

2.2. Ancillary Variables

In this study, we utilize three ancillary variables: the Normalized Difference Vegetation
Index (NDVI), the Normalized Difference Built-up Index (NDBI), and the digital elevation
map (DEM). These variables are selected since they are closely related to the LST variation,
especially in urban settings [10,55–57]. The NDVI and NDBI datasets are sourced from
Sentinel-2 imagery [58], which provides a high spatial resolution of 10 m and a revisit period
of 10 days. The calculation of NDVI and NDBI are performed as Equations (1) and (2):

NDVI =
NIR − RED
NIR + RED

(1)

NDBI =
SWIR − NIR
SWIR + NIR

(2)
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In Equations (1) and (2), NIR, RED, and SWIR corresponds to the near-infrared (central
wavelength: 0.842 µm), red (0.665 µm), and short-wave infrared (1.610 µm) bands of
Sentinel-2, respectively. NDVI exhibits a clear seasonal cycle as it is related to the vegetation,
whereas NDBI shows minimal variation during the summer months. Given this, for NDVI
values, we use daily values. Since NDVI values are available in a 10-day frequency due to
the revisit frequency of Sentinel-2, we temporally interpolate the NDVI values to a daily
resolution. For the NDBI, we use annual values which are the median NDBI values for the
entire summer months of that year. Over the 5-year study period, this approach results in a
total of 460 NDVI data maps (92 days × 5 years) and 5 NDBI maps (5 years).

The DEM dataset comes from the 1/3 arc-second (approximately 10 m) map from the
US Geological Survey [59,60]. We have chosen the 2017 DEM dataset for our study region,
as it provides the most up-to-date data available for our area of interest. These 2017 DEM
data are employed as a static variable map, consistently used across the entire study period
from 2019 to 2023. From the DEM map, we extract the elevation (ELEV) for our analysis.
Visualizations of these ancillary variables, including NDVI, NDBI, and ELEV, are presented
in Figure 2c–e.
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Figure 2. Data visualizations for the study, with permanent water bodies masked out in navy.
(a) Cloud-free average LST from ECOSTRESS with 70 m resolution for the entire study period.
(b) Same as (a), but for GOES estimates with 2 km resolution. (c) Average NDVI data with 10 m
resolution for the study period. (d) Similar to (c), but for NDBI. Note that NDBI values range from 0
to 1. However, for better visualization, the color bar is scaled from 0 to 0.1, since NDBI map contains
a high frequency of values near zero. (e) 10 m-resolution ELEV map for the year 2017, derived from
DEM data.

2.3. Collocation and Aggregation of Data

Given the irregular observation frequency of ECOSTRESS and the continuous hourly
measurements provided by GOES, we first align the GOES data temporally with ECOSTRESS
scenes. To achieve this, we identify two GOES scenes that temporally bracket each
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ECOSTRESS scene. We then calculate a weighted average of these two GOES scenes,
using weights inversely proportional to their temporal distance from the corresponding
ECOSTRESS scene. This process results in GOES data that are temporally aligned to the
ECOSTRESS timestamps. The collocated LST estimates from GOES and ECOSTRESS will
be referred to as LST2km and LST70m, respectively.

As a next step, we aggregate ancillary variables to align with the GOES and ECOSTRESS
data. For each GOES grid point, we define a circle with a radius of 1 km, which is half of
the GOES’s native resolution. Within this circle, we average the 10 m-resolution values of
NDVI, NDBI, and ELEV to derive aggregated values at the 2 km resolution for each of these
variables. This method ensures that the higher-resolution data are appropriately scaled
to match the coarser spatial resolution of the GOES dataset. These averaged variables are
then denoted as NDVI2km, NDBI2km, and ELEV2km, respectively. This aggregation process
ensures that the ancillary data are consistent with the spatial resolution of the LST data
from GOES. The same procedure is applied to ECOSTRESS grid points with a 35 m radius
to generate NDVI70m, NDBI70m, and ELEV70m.

2.4. Socioeconomic Data

In addition to meteorological and land cover data, we utilize socioeconomic data in
this study. The ethnic demographic data for Chicago are sourced from the 2020 Decennial
Census of the U.S. Census Bureau. Organized at the block level, this dataset covers
38,783 city blocks with an average block size of 0.015 km2 and standard deviation of area
of 0.103 km2. Each block details population counts for total, White, Black, Asian, and
Hispanic/Latino groups. The ethnic composition of Chicago’s population is as follows:
32.5% White, 29.61% Black, 7.14% Asian, and 30.80% Hispanic/Latino. Additionally, we
utilize the economic hardship and education level (population with high school diploma)
which come in at a block group level, which is a group of multiple-block-level data.

3. Downscaling Methods
3.1. TsHARP-Based Method

In our study, we employ a modified version of the TsHARP method [32], a widely used
method to downscale LST [31,61–63], as a baseline model. The TsHARP method establishes
a linear relationship between the NDVI and LST, using it to generate LST data at the finer
resolution of the NDVI map. Mathematically, this can be expressed as Equation (3):

LSTfine(s) = α(s)× (NDVIcoarse(s)− NDVIfine(s)) + LSTcoarse(s) + ε(s) (3)

In Equation (3), LSTfine and LSTcoarse each represents the LST at fine and coarse
resolutions, respectively, corresponding to ECOSTRESS and GOES LST products in this
study. NDVIfine and NDVIcoarse represents the aggregated NDVI value in a fine and coarse
resolution. α is a linear regression coefficient, and ε is an error term. Lastly, s is an indicator
for scene, implying that this relationship is tailored for each individual scene (221 scenes in
this study).

However, the traditional TsHARP method is scene-specific, meaning that the linear
relationship of NDVI and LST is established individually for each collocated time step. The
reason for the scene-specific nature of the TsHARP method lies in the potential variation in
the NDVI–LST relationship across different scenes, likely influenced by factors like the time
of day. To meet our objective of creating LST data even outside these collocated time steps,
we have generalized the approach. To address this, we generate the linear relationship for
each hour of the day rather than for each individual scene, allowing for a more generalized
application. This results in 24 individual TsHARP models representing each hour of the
day. Mathematically, this can be expressed as Equation (4):

LSTfine(h) = α(h)× (NDVIcoarse(h)− NDVIfine(h)) + LSTcoarse(h) + ε(h) (4)
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In Equation (4), all variables remain consistent with Equation (3), except for h, an
hour-of-the-day indicator. With the TsHARP method, we can calculate the downscaled LST
at the 70 m-resolution as LSTTsHARP.

3.2. Extreme Gradient Boosting (XGB)

Extreme Gradient Boosting (XGBoost, hereafter XGB) is the primary machine-learning
algorithm utilized in our study [64]. As part of the gradient boosting family, it operates by
constructing multiple decision trees sequentially, where each subsequent tree corrects the
errors of the previous ones. This iterative approach allows XGB to effectively learn from
complex data patterns and improve prediction accuracy.

Here, we utilize nine predictor variables—LST2km, NDVI70m, NDVI2km, NDBI70m,
NDBI2km, ELEV70m, ELEV2km, hour of the day (HOD), and day of year (DOY)—to predict
LST70m. A notable advantage of our XGB is the handling of multicollinearity, particularly
as NDVI and NDBI are often anti-correlated. Furthermore, by using information from both
the 2 km- and 70 m-resolutions, rather than just their differences as in TsHARP, XGB can
capture potential non-linearities in the influence of NDVI, NDBI, and ELEV on LST.

For the hyperparameter tuning on the XGB model, we employ a Bayesian optimization
algorithm [65] to optimize the selection of hyperparameters, with an objective to minimize
the root mean squared error (RMSE) of the model. This process involved 20 initial points,
followed by 80 iterations, making a total of 100 estimation on the hyperparameter space.
A list of hyperparameters with their descriptions and search ranges on the Bayesian
optimization algorithm is shown in Table 1. Additionally, to avoid the risk of overfitting,
we implement a five-fold cross-validation process. With the XGB method, we can calculate
the downscaled LST at the 70 m-resolution as LSTXGB.

Table 1. Hyperparameter description and optimization details. The “Hyperparameter” and “De-
scription” column show the name and description of hyperparameter utilized. The “Search Range”
column indicates the range within which the Bayesian optimization algorithm sought optimal values.
The “Selected Values” column shows the final hyperparameter values chosen by the optimizer.

Hyperparameter Description Search Range Selected Value

max_depth Maximum depth of a tree [3, 10] 4
learning_rate Boosting learning rate [0.01, 0.3] 0.05

n_estimators
Number of gradient-boosted

trees. Equivalent to number of
boosting rounds

[50, 1200] 700

gamma

Minimum loss reduction
required to make a further
partition on a leaf node of

the tree

[0, 5] 1

subsample Subsample ratio of the training
instance [0.5, 1] 0.7

colsample_bytree Subsample ratio of columns
when constructing each tree [0.5, 1] 0.75

3.3. Accuracy Verification with Evaluation Set

To assess the performance of the TsHARP and XGB, we divide the data into training
and evaluation sets. We select four specific scenes from the available 221 collocated scenes,
representing the hours of 0, 6, 12, and 18, as our evaluation sets, while all other scenes
are selected as training sets. This selection is aimed at evaluating the models’ ability to
capture LST variations at different times and their diurnal cycles. Furthermore, these scenes
are chosen based on having the second highest number of valid LST estimates in their
respective hours, ensuring minimal cloud cover and maximum coverage by ECOSTRESS.
Due to this selection threshold, the number of pixels in the training set is 92% of the total
data, and the pixels in the evaluation set is 8% of the total data. The schematic of the model
development, validation, and application are depicted in Figure 3.
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4. Downscaling Results

After training the TsHARP and XGB with the designated training sets (217 scenes, 92%
of data) with a five-fold cross-validation process, we compare their performance against
LST70m from ECOSTRESS, in the evaluation sets (four scenes, 8% of data). The initial RMSE
between ECOSTRESS and the nearest-neighbor-interpolated GOES data in the evaluation
set was 3.14 ◦C. However, the RMSE improved to 2.46 ◦C for TsHARP and to 2.00 ◦C
for XGB.

As a next step, we train TsHARP and XGB using all available collocated data for
broader application. We maintained the same hyperparameters for the XGB as in the
training phase to ensure there is no overfitting. Ultimately, the XGB model showed a
superior performance compared to TsHARP, with a reduction in the RMSE by 0.61 ◦C and
in the mean absolute error (MAE) by 0.40 ◦C, as depicted in Figure 4. The consistency
of these results across both the evaluation set and the entire dataset suggests minimal
overfitting in the XGB model and its enhanced effectiveness over TsHARP in predicting
LST. Detailed statistics including r-squared value (RSQ) and MAE, as well as examples
from the validation scenes, are presented in Figure 4.

Although XGBoost operates as a ‘black box’ model, preventing direct access to the
equations of individual trees, we can still discern the significance of predictor variables
through the model’s feature importance function. Specifically, we employ the “Gain”
function. This function quantifies the importance of each predictor by measuring the
average gain of a feature when it is used in trees. By analyzing the gain values, we can
determine which features contribute most to the model’s decision-making process, offering
insights into the underlying factors that drive the predictions, despite the inherent opacity
of the XGBoost algorithm. Table 2 presents the feature importance of all predictor variables
used in the development of the XGBoost algorithm. As observed in Table 2, HOD emerges
as the most significant variable in our model, followed by NDBI, DOY, NDVI, and ELEV.

Table 2. Relative importance of predictor variables in the XGBoost model, calculated with the average
gain of each feature when used in constructing the model’s trees.

Variable Abbreviation Feature Importance

Hour of the day HOD 0.1016
Day of year DOY 0.0345

Normalized Difference Built-up Index NDBI 0.0532
Normalized Difference Vegetation Index NDVI 0.0142

Elevation ELEV 0.0029
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Figure 4. Comparative analysis of LST downscaling methods. (a–d) Downscaling result for 15 July
2020, at 00:22, with (a) LST data from ECOSTRESS (LST70m), (b) GOES LST data (LST2km), (c) TsHARP-
downscaled LST (LSTTsHARP), and (d) XGB-downscaled LST (LSTXGB). Panels (e–h) show the same
set for 23 June 2022, at 12:13. (i) Depiction of a heatmap comparing LST70m with LSTTsHARP across
the entire collocated dataset, including a linear fit equation in orange, and statistical metrics for the
evaluation set in blue and for the final model in red. (j) Same as (i), but for LST70m and LSTXGB. R
squared, RMSE, and MAE values are also depicted in the figure for the Evaluation set (Eval, using
92% of data for training and tested on 8% of data) and the final model (Final, using all available data
for training and testing).

5. Ethnic Inequality of LST Exposure in Chicago
5.1. City-Scale Ethnic Inequality

Employing the XGB downscaling technique enables us to refine GOES LST data to a
higher resolution (70 m), irrespective of the availability of ECOSTRESS LST (application
stage of the schematic in Figure 3). With GOES providing hourly LST estimates over
Chicago, we can now obtain LST estimates at a 70 m resolution on an hourly basis. This
enhanced spatiotemporal resolution of the LST data facilitates in-depth assessments at the
neighborhood level. Utilizing this capability, we first apply our method to evaluate ethnic
inequality in terms of the high LST in Chicago.

For our study, we selected target days from the GOES dataset over a five-year period
based on specific criteria. Firstly, we focused on days during which more than 90% of
the urban area of Chicago was under clear sky conditions for the entire 24 h period. This
threshold was determined to be optimal after evaluating various levels, balancing data
availability with the quantity of suitable observation days. Additionally, we focus on days
with a minimum temperature exceeding 26 ◦C, representing the 75th percentile of the daily
average LST in Chicago’s urban regions. Applying these thresholds results in 10 days of
nearly clear skies and high LST, we effectively identify what can be considered as some
of the hottest days in Chicago. Following this, we apply the XGB downscaling, which
provides us with hourly estimates of LST at a 70 m resolution for these selected 10 days.

We calculated the average LSTXGB for each block across all 240 h included in our
selected 10-day period, capturing the 24 h diurnal LSTXGB cycle during Chicago’s hottest
days at the block level. We then computed the ethnicity-specific diurnal LST cycle for each
block by applying a weighted average approach to LSTXGB, where the weights correspond
to the percentage of each ethnic group within the block. Additionally, we conducted a same
analysis using LST2km, obtained through the nearest-neighbor interpolation of GOES LST
data. This method allows us to compare the effects of downscaling on the diurnal LST cycles
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specific to different ethnic groups. Chicago’s ethnic distribution and its corresponding
diurnal cycle of LST2km and LSTXGB are depicted in Figure 5a–d.
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Figure 5. (a–d) Distribution of ethnicity (map) and corresponding diurnal cycle of LST obtained
from LST2km (blue) and LSTXGB (red) for (a) White, (b) Black, (c) Asian, and (d) Hispanic/Latino
population. (e–h) Heat metric of each ethnicity, calculated as relative to White population. Metric
calculated with LSTXGB are in gray bar, while values in LST2km are in red line. (e) Mean, (f) maximum,
(g) minimum LST, and (h) DTR of LST.

In Figure 5a–d, the diurnal LST cycle derived from the LSTXGB model demonstrates a
more distinct variation compared to that from LST2km. This higher variability is consistent
across all ethnic demographics, showcasing the increased sensitivity of capturing the
diurnal evolution of LST when using the downscaling method.

For a focused examination of ethnicity-specific heat exposure, we compute four LST
metrics utilizing LSTXGB data: mean, maximum, minimum, and the diurnal temperature
range (DTR). Figure 5e–h present bar graphs that illustrate the variance in these heat metrics
among ethnic groups, with comparisons made relative to the White population. Both the
mean and maximum LST (Figure 5e,f) indicate higher temperatures for the Hispanic/Latino
populations compared to Whites. Conversely, the minimum LST differences are negligible
among the ethnic groups, with a variation of less than 0.1 ◦C. The DTR depicted in Figure 5h
reveals pronounced disparities, particularly for the Hispanic/Latino community, mostly
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due to the high maximum LST during the day. Overall, we found that Hispanic/Latino
communities are more exposed to higher LST and DTR.

However, while the LSTXGB captures greater diurnal variability in ethnic-specific LST
compared to LST2km, it does not highlight more significant ethnic differences in the mean,
maximum, and DTR of LST. This is attributed to the fact that, although the XGB method
detects a higher variation, the magnitude of these differences between ethnicities are less
pronounced compared to those observed with LST2km.

5.2. Regional Ethnicity Analysis on Humboldt Park

To delve deeper into ethnic inequalities with an emphasis on Hispanic/Latino com-
munities, our analysis now focuses on the Humboldt Park region of Chicago. Humboldt
Park has become a focal point for discussions in Chicago, regarding gentrification, which
presents a complex tapestry of cultural shifts, economic development, and displacement
pressures [66–68]. Furthermore, by concentrating our research on a more confined area
of Humboldt Park, rather than the entire expanse of Chicago, we enhance our ability to
discern the nuances and localized impacts of downscaling.

Figure 6a displays a demographic map of Humboldt Park, highlighting ethnic dis-
parities at the block level. This is achieved by calculating the difference between His-
panic/Latino and White population percentages in each block. The resulting values, where
larger numbers signify a higher prevalence of Hispanic/Latino over White populations,
reveal a significant west–east gradient in the distribution of these ethnic groups. Moreover,
areas with a Hispanic/Latino majority are characterized by distinct socio-economic pat-
terns, as depicted in Figure 6b (economic hardship) and Figure 6c (educational attainment).
Note that the analysis of these socio-economic metrics is conducted at the block group level,
offering a coarser resolution compared to the ethnic data.

Figure 6b presents the hardship index, a measure of economic adversity where higher
scores denote greater hardship. Figure 6c illustrates the educational metric, which quan-
tifies the proportion of the population with a high school diploma. The data illustrated
in these figures indicate that, within Humboldt Park, communities predominantly com-
prising Hispanic/Latino individuals tend to face greater economic disadvantages and
exhibit lower educational attainment levels. Both exhibit strong correlations with the
Hispanic/Latino population percentage, with R² values of 0.56 and 0.49, respectively, un-
derscoring a profound association between ethnic composition and socio-economic factors
in the region.

We match these data with the maximum LSTXGB during the 10 hottest days in Chicago,
as calculated from the previous section (Figure 6d). In the Humboldt Park region, there is
a strong, positive relationship between the block-level Hispanic/Latino population ratio
and maximum LST (Figure 6e). Block-groups with predominantly Hispanic/Latino popu-
lations tend to experience greater maximum temperatures than blocks with predominantly
White populations. Calculating the linear fit (R2 = 0.52) between the ethnic difference and
maximum LST, we find that blocks completely constituted with Hispanic/Latino residents
show a maximum LST that is 1.5 ◦C higher compared to blocks with solely White residents.

We calculate the same statistics using LST2km. The results, evident in Figure 6f,g,
demonstrate that employing LST2km notably reduces the spatial variability of LST. When
calculating the linear relationship between ethnic differences and LST2km, both the slope
and the R2 value decrease. This suggests that, while using a downscaled LST may not
significantly impact the assessment of ethnic differences at the city level (as shown in
Figure 5), it plays a crucial role in analyzing ethnic inequality at a regional level, such as in
Humboldt Park.
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Figure 6. (a) Ethnic map of Humboldt Park region, where ethnic difference is calculated as His-
panic/Latino percentage minus White percentage. Red colors show blocks predominantly inhabited
by Hispanic/Latino residents, while blue shows the blocks that are home to White residents. (b) Map
of economic hardship index for Humboldt Park region. (c) Map of educational attainment in Hum-
boldt Park region. (d) Maximum LSTXGB map for Humboldt Park region, calculated from 10 clear-sky
hottest day in Chicago. (e) Scatterplot and linear fit of relationship between ethnic difference and
maximum LSTXGB. (f,g) Same as (d,e), but with LST2km.
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6. Discussions and Conclusions

In this study, we developed an XGBoost-based algorithm to downscale 2 km-resolution
LST data from the GOES satellite to a finer 70 m resolution, utilizing ancillary variables
including NDVI, NDBI, and DEM. This method outperformed the conventional TsHARP
technique, achieving a lower RMSE of 1.90 ◦C compared to 2.51 ◦C for TsHARP. The distinc-
tive aspect of our approach is its reliance on data from the geostationary satellite GOES and
the high-resolution estimate from ECOSTRESS with an irregular revisit period, facilitating
hourly LST downscaling, which is vital for acquiring high-resolution LST data consistently
throughout the day. Prior research predominantly focused on LST measurements taken
once daily [8,45,69], an approach that may not adequately capture the complete diurnal
cycle of LST. Additionally, our methodology has the potential for broader application across
North America, leveraging the global observational reach of ECOSTRESS and the North
America-focused capabilities of GOES.

To demonstrate the utility of these data, we assessed a 70 m-resolution LST on
Chicago’s hottest days and investigated its association with ethnic inequality. Our findings
reveal that the Hispanic/Latino communities endure the highest LST and variability, evi-
denced by an elevated maximum LST and DTR. Although LST is not a direct indicator of
human exposure to high temperatures, its relevance as a proxy is supported by the previous
research on thermal comfort [70–72]. Given the previous research indicating the limited
healthcare access for Hispanic/Latino communities in Chicago [73], the observed temper-
ature extremes could disproportionately amplify the risk of temperature-related health
issues within these populations [74,75]. Furthermore, in Chicago, gentrification frequently
impacts Hispanic/Latino communities [76–78], a process associated with reduced access to
green spaces [79] that can increase LST [80–82] and exacerbate health outcomes [83].

To deepen our understanding of the impact of gentrification, we focus on Chicago’s
Humboldt Park, an area notably affected by such changes. Within this region, we observed
that blocks predominantly inhabited by Hispanic/Latino residents, who are economically
and educationally disadvantaged, display a maximum LST that is 1.5 ◦C higher than blocks
predominantly occupied by White residents. This disparity highlights the intersection
of urban development and ethnic inequality, revealing how gentrification can lead to
environmental inequities. The use of downscaled LST data, derived from our developed
XGBoost downscaling method, enhances the spatial resolution of our analysis, allowing for
a more precise and localized examination of these temperature disparities. Additionally,
unlike data from ECOSTRESS, which is limited by its return period, our downscaled
method enables the estimation of high-resolution LST on an hourly basis, providing a more
continuous temporal resolution. This capability allows for a more detailed understanding
of how LST varies throughout the day, offering insights into the diurnal patterns that affect
urban heat distribution and the resulting impacts on the community’s residents. This
refined approach offers a clearer, more granular understanding of how urban changes
affect different segments of the population, highlighting the critical need for targeted urban
planning and interventions.

Overall, our findings indicate that, in Chicago, the populations with the fewest re-
sources to combat high temperatures are those most exposed to elevated LST. This discovery
is pivotal for policymakers, as it underscores the urgency of targeted urban planning inter-
ventions, such as augmenting green spaces within underrepresented communities. The
significance of such measures is compounded by the existing inequality in the distribution
of green spaces across Chicago [48], further emphasizing the need for equitable access to
these critical urban infrastructures.

While this study provides significant insights, there is uncertainty involved and room
for improvement. Firstly, the accuracy of LST estimates from both GOES and ECOSTRESS
can cause uncertainty [52,55,84–87] as factors such as different observation angles can
influence the LST measurements [88]. Since the purpose of this study is to downscale the
2 km satellite-based LST to 70 m satellite-based LST estimates, inherent uncertainties in
satellite LST measurements are unavoidable. To address this, in situ measurements of LST
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from meteorological stations of flux towers could be utilized. However, incorporating these
measurements is outside the scope of the current study, although it represents a promising
direction for future research. Secondly, incorporating metrics beyond LST, such as a 2 m
air temperature and humidity, could enhance the direct analysis of health outcomes and
community impacts. These metrics, which cannot be directly estimated from satellite data,
would need additional research and methodological advancements, such as incorporating
ground-based lidar or a temperature measuring campaign [89]. Lastly, LST measurements
are perforumed under clear sky conditions. Other downscaling methods rather than using
satellite estimates can overcome this limitation [90–92].
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