
1.  Introduction
Reanalysis temperature data, such as the ERA-5 Land data (Muñoz-Sabater et  al.,  2021), have been widely 
used in studies of extreme heat (Ali et al., 2022; Lee & Dessler, 2023; Martinez & Iglesias, 2022; Raymond 
et al., 2020). Their primary advantage is the gridded format, lack of missing values, and the physical consistency 
provided by the underlying forecast model used in the data assimilation procedure.

However, reanalysis data have limitations, particularly when used in city-scale research, a crucial focal point 
considering over 80% of the US population lives in urban areas. The data assimilation process faces signif-
icant challenges in accurately representing urban climates due to the rural bias of weather stations and the 
sporadic  coverage of polar-orbiting satellites (Hausfather et  al.,  2013). Additionally, inherent limitations of 
the underlying climate models (e.g., their resolution) can hinder the precise simulation of urban microclimates 
(Daniel et al., 2019). Thus, despite the apparent advantages of reanalysis data, their application in urban climate 
research and climate impact research presents notable obstacles.

Satellite observations, whether obtained by polar-orbiting or geostationary satellites, provide high-resolution 
estimates of surface temperature. The launch of the Geostationary Operational Environmental Satellite (GOES)-
16 and 17 satellites (hereafter referred to collectively as GOES) significantly expanded the scope for detailed 
temperature observations across the US (Chang et al., 2021; Li et al., 2021; Yu et al., 2008; Zhang & Du, 2022). 
These satellites offer sub-hourly estimates, enabling nearly continuous monitoring of the surface. While the 
majority of earlier urban climate studies relied on data from polar-orbiting satellites like Moderate Resolution 
Imaging Spectroradiometer (MODIS) (Palou & Mahalov, 2019; Sidiqui et al., 2016; Tomlinson et al., 2012), or 
LandSat (Kaplan et al., 2018; Sagris & Sepp, 2017), the utilization of GOES remains relatively novel, with only 
a handful of studies capitalizing on its capabilities for similar research (Chang et al., 2021, 2022).

In our study, we compare GOES satellite estimates to ERA-5 reanalysis data across nine major cities in the United 
States and highlight the importance of high-resolution climate observations. Our investigation centers on four key 
questions: (a) estimating the general offset between the two data sets; (b) comparing the magnitude of the Surface 
Urban Heat Island Intensity (SUHII) in both data sets; (c) comparing the representation of extreme temperature 
events in both data sets; and (d) estimating the exposure to extreme temperature by population.

The reasons for focusing on these areas are manifold. First, a clear understanding of the general offset between 
the two data sets is of interest given the wide use of reanalysis. Second, given the significant contribution of 
SUHII to elevated city-level temperatures, it is imperative to assess how effectively reanalysis data sets capture 
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this phenomenon (Hsu et al., 2021; Li et al., 2017). Third, the accurate representation of extreme temperature 
events is crucial, as these events can have significant impacts on human health and city infrastructure (Lee & 
Dessler, 2023; Ma et al., 2015; Santágata et al., 2017; Sheridan & Allen, 2015; Stone Jr et al., 2021). Lastly, 
gauging the extent of population exposure to temperature extremes allows for an evaluation of public health risks 
and targeted interventions (Freychet et al., 2022; Jones et al., 2015; Tuholske et al., 2021).

1.1.  Data

Our study utilizes hourly land surface temperature (LST) estimates from GOES-16 and -17 (Yu et al., 2008), 
which is provided on an irregular 2-km grid. Our analysis focuses on nine large US cities: Atlanta, Chicago, 
Dallas, Houston, Miami, Oklahoma City, Orlando, Phoenix, and Tampa. For these cities and their surrounding 
area, we extract LST data for the hot season (June, July, and August, or JJA) from 2018 to 2021. Total population 
of the nine cities is around 10M, which is about 3% of total US population. One inherent limitation of satellite 
estimates is the inability to capture surface data beneath cloud cover. Accordingly, we exclude cloudy pixels in 
our analysis using the GOES cloud mask. The average cloud-free LST during the study period for three of the 
nine cities is detailed in Figures 1a–1c.

We compare the GOES LST to LST fields from ERA-5 (Muñoz-Sabater et al., 2021). We use here the ERA-5 
Land data set, a higher resolution derivative of the standard ERA-5 reanalysis (9 km for ERA-5 Land as opposed 
to 31 km for standard ERA-5). For simplicity, we will refer to the ERA-5 Land data set as simply “ERA-5” for the 
remaining sections of the paper. It's worth noting that the GOES-16 and GOES-17, which are employed in this 
study for comparison, are not assimilated into ERA-5, making GOES an independent data set. The ERA-5 data 
set is also provided on an hourly basis; however, its spatial resolution is 0.1° × 0.1° latitude-longitude, coarser 
than that of GOES.

We will also use gridded population of the world version 4 (Doxsey-Whitfield et al., 2015) data from 2020. GPW 
is provided in 5-year intervals with 30 arc seconds resolution (approximately 1 km at the equator). To align the 
population grid to that of GOES grid, we take populations that are within a circle of 0.01° radius of each GOES 
grid points and sum the population to come up with population data at GOES resolution. The depiction of this 
population distribution can be observed in Figures 1g–1i.

Lastly, we incorporate land-cover data sourced from Sentinel-2 into our study (Karra et al., 2021). This data set 
comprises nine categories: water, trees, flooded vegetation, croplands, built areas, bare ground, snow/ice, and 
rangeland, all with a 10-m spatial resolution and provided every year. Given that these land cover data have a 
higher resolution than that of the GOES, we adjust its resolution to match GOES's. To do this, for the each GOES 
grid point, we take a circle around the grid point with a radius of 0.01°. For the land cover within the circle, we 
compute the percentage distribution of the nine categories every year and select the most prevalent land cover 
type to represent that GOES grid point. The categories are visualized in Figures 1j–1l.

Although the land-cover data set includes nine land cover categories, our primary focus in this study is the “built 
area” category. Due to the high spatial resolution of the Sentinel-2 data, it identifies very small built areas nestled 
within non-urban zones. To filter these out, we employ a Gaussian kernel smoother to define the boundary of 
substantial built areas. Henceforth, we classify the grid points falling within this boundary as “Urban,” and those 
outside this boundary as “non-Urban.” The outcome of this urban, non-urban categorization is delineated by a 
black line in Figures 1j–1l. The plots for other cities in this study and number of GOES and ERA-5 pixels used in 
this analysis can be found in Supporting Information S1.

Since there is a difference between the spatial resolution of GOES and ERA-5, there are two ways to compare 
these data sets. First is to convert GOES to ERA-5 resolution, by averaging GOES grid points that surrounds 
each ERA-5 grid points. The second method is to convert ERA5 to GOES resolution by linearly interpolating 
the ERA-5 grid to the GOES grid. We found that there are no significant differences in the conclusions of this 
study when using the two methods, so, in places where it is required, we show results from converting GOES to 
ERA-5 resolution.

1.2.  General LST Offset Between GOES and ERA-5

There is a clear offset in LST between GOES and ERA-5 (Figures 1a–1c vs. Figures 1d–1f). Figure 2 quanti-
fies the difference between the two data sets, expressed as temporally averaged GOES LST minus temporally 
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averaged ERA-5 LST for the entire period. On average, ERA-5 is 1.63°C higher than GOES averaged across all 
urban regions in this study. City-specific values can be found below each figure.

While ERA-5 generally records a higher overall LST, the offset displays distinctive spatial characteristics. In 
urban areas, ERA-5 LST averages 1.16°C higher than GOES LST, while, in non-urban areas, this offset is 
1.80°C. Given the demonstrated accuracy of GOES LST (Wang et al., 2019; Yu et al., 2011) and the widespread 
use of satellite-based LST in urban temperature analysis (Bechtel et al., 2019; Chang et al., 2021; Najafzadeh 
et al., 2021), it can be inferred that ERA-5 may have limitations in accurately capturing the LST gradient between 
urban and non-urban areas.

This discrepancy of LST offset (GOES minus ERA-5) between urban and non-urban area in Phoenix is not as 
evident compared to other cities (Figure 2h). This can be traced back to Phoenix's arid climate, as noted in previ-
ous study (Wang & Li, 2021).

Figure 1.  The average cloud-free land-surface temperature from GOES (a–c) and ERA-5 (d–f) during the study period. (g–i) Population counts with logarithmic color 
scales. (j–l) Land cover data, with the urban boundary, as defined by the Gaussian kernel, represented by a black line. Figures for the other cities can be found in Text 
S1 in Supporting Information S1.
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1.3.  Surface Urban Heat Island Effect

A key metric in urban climate impact studies is the SUHII, the difference between LST in an urban region and 
that in the surrounding non-urban area. To estimate the SUHII, we divide each city region into “urban” and 
“non-urban” areas (as defined in Figures 1j–1l). We then calculate the average LST for those areas on an hourly 
basis, determining the SUHII by subtracting the average non-urban LST from the urban LST, using data at ERA-5 
resolution.

In our approach, when a boundary pixel contains a mix of urban and non-urban areas, we assign weights to the 
pixel's LST value for averaging purposes based on its land composition. For instance, if a boundary pixel is 
comprised of 70% urban and 30% non-urban areas, we calculate the urban average by multiplying the pixel's LST 
by 0.7, and the non-urban average by multiplying the same LST by 0.3. The height above sea level (elevation) can 

Figure 2.  Spatial pattern of the average difference between cloud-free GOES and ERA-5 land-surface temperature (LST) throughout the study period, computed as 
GOES minus ERA-5. For this plot, GOES has been averaged to ERA5 resolution. Urban boundaries are demarcated by black lines and water bodies are masked out 
with a gray area. Offset of LST between GOES and ERA-5 are noted below each panel, where “All” representing the offset calculated from the entire region, “Urban” 
representing the offset within urban boundaries (black boundaries), and “NonUrban” representing the offset outside of urban boundaries. In all cases, water bodies are 
masked out from calculation.
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impact SUHII, so we have also calculated impact of elevation on urban and non-urban LST. We found that includ-
ing elevation does not significantly alter the outcomes of our study (see Text S2 in Supporting Information S1).

Figure 3 presents the diurnal cycle of the SUHII as represented by both GOES and ERA-5 LST data sets. As 
anticipated from Figures 1 and 2, GOES exhibits a higher SUHII than ERA-5, with a daily average SUHII for all 
cities of 0.74°C in GOES compared to 0.20°C for ERA-5. Values for the mean SUHII for each city region can 
also be found in Figure 3.

The SUHII diurnal cycle estimated from the GOES shows a few distinct diurnal cycle patterns. The first pattern, 
observed in Atlanta, Houston, Miami, Orlando, and Tampa, is characterized by a single major peak during the 
day, followed by a gradual decrease through the night. The second pattern, observed in Chicago, Dallas, and 
Oklahoma City, is marked by a significant peak during daytime and a second peak in the evening. Lastly, Phoenix 
exhibits a unique pattern where a minimum is observed during daytime.

These findings align with the categorization proposed by Liu et al. (2022) and Lai et al. (2018), which classified 
SUHII diurnal cycles based on patterns identified in major cities globally. They noted that the first pattern is typical 
of regions with a warm climate, and the second pattern is observed in cities with high population density or high 

Figure 3.  Diurnal cycle of UHII in ERA-5 (blue lines) and GOES (red lines) in nine cities. Solid lines show the average diurnal cycle calculated from the entire study 
period, and the shaded regions represent the first to third quantile range of hourly surface urban heat island intensity (SUHII) recorded in the study period. Average 
SUHII for GOES and ERA-5 are also shown below each figure.
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nighttime anthropogenic heat release. The last pattern, for Phoenix, tends to be prevalent in arid climate regions 
(Chow et al., 2012; Wang & Li, 2021), where the non-urban areas typically exhibit sparse vegetation and are predom-
inantly characterized by bare ground. These terrains heat up quickly with sunrise, inducing a negative SUHII in the 
daytime. Conversely, in nighttime, urban infrastructure releases the accumulated heat from the day, while the bare 
ground, having retained less daytime heat, contributes less. This dynamic leads to heightened SUHII values during 
the night.

In some cases, ERA-5 has the right shape but smaller magnitude (in Atlanta, Dallas, Houston, and Oklahoma 
City); in others, the shape is wrong (in Chicago, Miami, Orlando, Phoenix, and Tampa). These findings under-
score the risks of using reanalysis data to examine SUHI.

1.4.  Extreme Heat Events

Extreme temperatures are a key driver of the health impacts of climate change (Ebi et al., 2021). Consequently, we 
are interested in determining the effectiveness of the GOES and ERA-5 data sets in accurately representing such 
extreme temperature events. To do this, we first compute the area-averaged (including urban and non-urban) LST 
for each hour over the duration of the study period using GOES data. To ensure that the majority of regions are not 
cloud covered in our analysis, hours with over 10% cloud cover in the region are excluded from this calculation. 
We then pinpointed the timestamps of the top 0.1% highest LST values in the GOES data, giving us the ∼16 hottest 
hours for each city. Following this, we calculated the average LST field for both the ERA-5 and GOES data sets for 
these timestamps and averaged the GOES data to ERA-5 resolution before differencing the data sets. This method 
provides a city-specific estimate of the LST recorded by GOES and ERA-5 during the most intense heat events.

Figure 4 presents the LST differences between GOES and ERA-5 during instances of extreme heat, determined 
by subtracting ERA-5 LST from the GOES LST. The area-averaged LST from GOES exceed those from ERA-5 
by an average of 2.40°C. This is quite different from the overall bias (Figure 2), where we observed ERA-5 typi-
cally measuring 1.63°C higher than GOES. Therefore, while ERA-5 on average shows higher LST, the situation 
is reversed during extreme heat events.

Focusing just on urban areas (demarcated by the black lines in Figure 4), the LST discrepancy between GOES 
and ERA-5 data is more pronounced, with GOES being on average 4.14°C higher than ERA-5. When using high-
est 1% LST hours from GOES, rather than 0.1%, GOES is 2.42°C hotter. Consistent with Figure 2, GOES LST 
typically exhibits a larger urban to non-urban LST gradient compared to ERA-5. Furthermore, as discussed in the 
previous section and in Figure 3, the SUHII is most pronounced during the hottest time of the day, explaining at 
least part of the offset between the data sets during extreme heat events.

Distinct LST discrepancies between GOES and ERA-5 are observed across various regions, often linked to land 
cover differences. Factors influencing these variations in extreme LST representation, such as trees and cropland, 
are detailed in Text S3 in Supporting Information S1. Our findings underscore that land cover plays a pivotal role 
in shaping how both GOES and ERA-5 represent extreme LST. Given ERA-5's biases, relying on it for estimating 
extreme LST events will likely underestimate their true magnitude. This has implications for studies that have 
used it to estimate the impacts from extreme heat (Lee & Dessler, 2023).

1.5.  Population Exposure to Extreme Heat

Population density varies within cities. To reflect that, we now calculate the LST extreme heat exposure as a 
function of population. Utilizing the GOES data set, we isolate the hottest hour for each day throughout the 
entire study period from 2018 to 2021, which is typically between 12:00 and 16:00. With 92 days each year, 
this yields a total of 368 hr. From here, we leverage the gridded population data set to calculate the LST that the 
hottest 1%, 5%, 10%, and 25% of the population experience. This calculation is performed separately for each 
city (Figure 5). In this section, we analyze GOES LST data at its native resolution and compare it to ERA-5 
linearly interpolated to GOES resolution, to more accurately reflect the spatial scale of population variations 
across each city.

We see higher LSTs in the GOES data set than in the ERA-5 data set in all cities for the hottest population, except 
for Phoenix. This can be attributed to Phoenix's arid climate, as discussed earlier. These differences seem likely to 
be the result of GOES’ superior horizontal resolution. With a coarser grid, ERA5 will not resolve the very hottest 
temperature in a city, while GOES does.
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Considering larger fractions of the populations is equivalent to averaging over a larger area, so the discrepancy in 
LST exposure between the two data sets decreases. When looking at a large enough fraction of the population, the 
overall warm bias in ERA-5 LST reemerges, explaining why, for example, ERA-5 LST exceeds GOES for 25% 
of the population in Dallas and Oklahoma City.

In conclusion, choosing the GOES data set over ERA-5 produces hotter estimates for the hot end of the temper-
ature distribution: an average of 3.58°C for the top 1% of the population and 2.91°C for the top 5% of the popu-
lation (excluding Phoenix). This finding emphasizes the critical importance of high resolution when studying 
extreme heat exposure in urban populations.

In this section, we utilized both GOES and ERA-5 data sets at GOES resolution to reflect the detailed population 
distribution in urban areas. When re-gridding the GOES and population data sets to ERA-5 resolution, a similar 
yet less pronounced trend was observed.

Figure 4.  Land-surface temperature difference between GOES and ERA-5 data sets during extreme heat conditions, for each city, calculated as GOES minus ERA-5. 
The urban boundaries of each city are demarcated by a black line. Average difference between GOES and ERA-5 are noted below each panel, where “All” representing 
the offset calculated from the entire region, and “Urban” representing the offset within urban boundaries (black boundaries). For all cases, water bodies are masked out 
from calculation.
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2.  Conclusion
In this study, we compared high-resolution satellite estimates of LST with estimates of this quantity from the 
ERA-5-land reanalysis. ERA-5 generally overestimates LST compared to GOES, with this difference less 
pronounced in urban areas. A consequence of this is that ERA-5 also underestimates the SUHII, the difference 
between the LST of an urban area and the non-urban surrounding region. We also find that ERA-5 does a poor 
job simulating the diurnal cycle of the SUHII.

Furthermore, while ERA-5 is generally hotter than GOES, we found that ERA-5 underestimates extreme hot 
conditions, a particularly important result since most of the damage of climate change comes from the extremes. 
Finally, our study's examination of urban population LST exposure showed consistently hotter temperatures in 
the GOES data compared to ERA-5 across all cities studied except Phoenix. The hottest 1% of the population 
experiences a 3.58°C higher LST during the hottest hour of the day, with this discrepancy diminishing when 
larger fractions of the population are considered. This pattern can likely be attributed to the finer resolution of 
GOES compared to ERA-5.

Our study reinforces the value of using high-resolution, high-accuracy data for urban climate impact assessments. 
This study also has its constraints. We analyzed LST around nine major US cities, each characterized by unique 
climatic conditions and urban layouts. Furthermore, the spatial resolution of GOES is 2 km, which might still not 
be sufficient for detailed neighborhood-level analysis. We also only consider LST, whereas 2-m air temperature 

Figure 5.  Average daily maximum land-surface temperature (LST) for the top 1%, 5%, 10%, and 25% of the population. The blue bars represent LST values obtained 
from the linearly interpolated ERA-5 data adapted to the GOES grid, while the red bars show LST values derived directly from the GOES data set.
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is expected to be more important in climate impact assessment. However, since GOES does not estimate 2-m 
air temperature, more work is needed in determining 2-m air temperature at high spatial resolution. We also 
only investigated temperature, not considering heat stress variables, such as wet-bulb temperature. Clearly, more 
research on this important topic of measuring surface urban heat is called for.
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