
remote sensing  

Article

Machine Learning Based Algorithms for Global Dust Aerosol
Detection from Satellite Images: Inter-Comparisons
and Evaluation

Jangho Lee 1 , Yingxi Rona Shi 2,3, Changjie Cai 4, Pubu Ciren 5,6, Jianwu Wang 2,7 , Aryya Gangopadhyay 7

and Zhibo Zhang 2,8,*

����������
�������

Citation: Lee, J.; Shi, Y.R.; Cai, C.;

Ciren, P.; Wang, J.; Gangopadhyay, A.;

Zhang, Z. Machine Learning Based

Algorithms for Global Dust Aerosol

Detection From Satellite Images:

Inter-Comparisons and Evaluation.

Remote Sens. 2021, 13, 456.

https://doi.org/10.3390/rs13030456

Academic Editor: Wei Gong

Received: 6 December 2020

Accepted: 21 January 2021

Published: 28 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77840, USA;
jangho.lee.92@tamu.edu

2 Joint Center for Earth Systems Technology, University of Maryland, Baltimore County,
Baltimore, MD 21250, USA; yshi2@umbc.edu (Y.R.S.); jianwu@umbc.edu (J.W.)

3 Climate and Radiation Laboratory (613), NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
4 Department of Occupational and Environmental Health, University of Oklahoma,

Oklahoma City, OK 73019, USA; Changjie-Cai@ouhsc.edu
5 I M Systems Group Inc., Rockville, MD 20852, USA; pubu.ciren@noaa.gov
6 Center for Satellite Applications and Research, National Oceanic and Atmospheric Administration,

College Park, MD 20740, USA
7 Department of Information Systems, University of Maryland, Baltimore County, Baltimore, MD 21250, USA;

gangopad@umbc.edu
8 Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
* Correspondence: zhibo.zhang@umbc.edu

Abstract: Identifying dust aerosols from passive satellite images is of great interest for many ap-
plications. In this study, we developed five different machine-learning (ML) based algorithms,
including Logistic Regression, K Nearest Neighbor, Random Forest (RF), Feed Forward Neural
Network (FFNN), and Convolutional Neural Network (CNN), to identify dust aerosols in the day-
time satellite images from the Visible Infrared Imaging Radiometer Suite (VIIRS) under cloud-free
conditions on a global scale. In order to train the ML algorithms, we collocated the state-of-the-art
dust detection product from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) with
the VIIRS observations along the CALIOP track. The 16 VIIRS M-band observations with the center
wavelength ranging from deep blue to thermal infrared, together with solar-viewing geometries and
pixel time and locations, are used as the predictor variables. Four different sets of training input
data are constructed based on different combinations of VIIRS pixel and predictor variables. The
validation and comparison results based on the collocated CALIOP data indicate that the FFNN
method based on all available predictor variables is the best performing one among all methods. It
has an averaged dust detection accuracy of about 81%, 89%, and 85% over land, ocean and whole
globe, respectively, compared with collocated CALIOP. When applied to off-track VIIRS pixels, the
FFNN method retrieves geographical distributions of dust that are in good agreement with on-track
results as well as CALIOP statistics. For further evaluation, we compared our results based on
the ML algorithms to NOAA’s Aerosol Detection Product (ADP), which is a product that classifies
dust, smoke, and ash using physical-based methods. The comparison reveals both similarity and
differences. Overall, this study demonstrates the great potential of ML methods for dust detection
and proves that these methods can be trained on the CALIOP track and then applied to the whole
granule of VIIRS granule.

Keywords: CALIOP; VIIRS; machine learning; deep learning; dust detection

1. Introduction

Mineral dust aerosols (hereafter dust for short) usually originate from the desert
regions and can be transported to almost any part of the world [1,2]. They have an
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important role in Earth’s climate system through their influences on the radiative energy
budget of Earth, the microphysics and lifetime of clouds [3], and the terrestrial and marine
ecosystems. Dust aerosols can also influence the air quality, which further impact public
health. Dust aerosols have been linked to respiratory illnesses, such as asthma, meningitis,
and others. Fungi, bacteria, and even some viruses can travel on aerosol particles for miles,
causing the spread of diseases and other ailments [4,5]. A reliable dust detection is the first
step to achieve a better understanding of dust climatic effects and to track dust event for
air quality purpose, although there are many ground-based networks to monitor dust and
other types of aerosols. Satellite-based remote sensing is the only means to detect dust
aerosols on a regional to global scale. Satellite-based dust detection algorithms were first
developed for passive observations. Most of these algorithms are so-called “physically-
based”. They rely on the physical intuitions of the developers to identify the radiative
signatures (e.g., reflectance, color, and brightness temperature) of dust aerosols in a passive
satellite image that are connected to the physical properties of dust (e.g., composition, size,
shape, and temperature). For example, dust has significant absorption in the ultraviolet
(UV). In the visible region, dust is usually brighter than the dark ocean and also has a
distinct color. In the infrared, dust can reduce the brightness temperature of the scene
and has a unique spectral signature [6]. These radiative signatures of dust have been
used independently or in combination in the previous studies to detect dust in a passive
satellite image [7–12]. Validation of these dust detection algorithms and evaluation of
their uncertainties exposed several common problems of these physical-based algorithms:
first, the development of these physical-based algorithms is often based on a handful of
cases due to the slow learning process of human. Second, the empirical thresholds that are
commonly used in these algorithms to distinguish dust from the environment are often
too rigid to fit miscellaneous situations. Third, at certain conditions, land surface, clouds,
and other types of aerosols may have similar radiative signatures as dust, which could
confound the detection algorithm [13–15]. As a result of these problems, physically-based
dust detection from passive satellite observations often misses dust layers that are either
too thick or too thin, miss-identifies clouds as dust, and misses dust over the desert regions.
Finally, but not least, many physically-based algorithms only utilize a small fraction of
the observations available from the passive sensors because the rest of the observations
are considered to have little information content of dust. For example, Zhou et al. [15].
developed a physically-based algorithm to detect dust from MODIS and used 14 out of
36 MODIS bands. Although these bands can provide sufficient information content for
dust detection, it is hard to tell how much information can be added if including the
observations from other bands [16–20].

The launch of the the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observa-
tion (CALIPSO) in 2006 provided an unprecedented opportunity for satellite-based dust
detection. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard
CALIPSO satellite has two channels at 532 nm and 1064 nm. As an active lidar, CALIOP
can resolve the vertical distribution of aerosol and cloud accurately, which is extremely
difficult, if not impossible, for most passive sensors [21,22]. CALIOP also has polarization
capability in its 532 nm channel, which enables it to easily identify the shapes (spherical vs.
non-spherical) of cloud and aerosol particles. Spherical particles such as cloud droplets and
smoke aerosols usually have near-zero lidar depolarization ratio. In contrast, non-spherical
particles, such as ice particles in cirrus clouds and dust aerosols have significantly larger
lidar depolarization. Combining the depolarization ratio with other measurements, such
as backscattering and color ratio, CALIOP can provide reliable dust detection in situations
that are highly challenging for the aforementioned passive algorithm, such as detection
of a thin dust layer over a bright desert surface. CALIOP dust detection also suffers from
the following important limitations: (1) CALIOP has an extremely small spatial sampling
rate in comparison with passive sensors, making the detection of intermittent dust event
difficult. (2) The signal-to-noise ratio (SNR) of a single lidar pulse is usually low. As a
result, the CALIOP algorithm has to average multiple lidar pulses to enhance the SNR,
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which further reduces the sampling rate. (3) cirrus clouds and sometimes other types of
aerosols (e.g., debris in the smoke) can also have non-zero lidar depolarization ratio which
confounds the dust detection; this problem is common at polar regions as the low level icy
clouds can be mistaken as dust. For the same reason, sometimes thick dust layers can be
mis-classified cirrus clouds, although Liu et al. (2009) such misclassification only account
for 0.7% of the “total [tropospheric] features”. (4) During the daytime, the CALIOP 532 nm
channel suffers from solar background contamination leading to nosier retrievals.

Despite these limitations, the CALIOP-based algorithm can still provide a reliable
dust detection product that are widely used in the dust-related studies. In comparison
with other alternative methods, e.g., ground-based AERONET and lidar, a great advantage
of CALIOP is its global coverage which makes it an optimal choice for our purpose of
global dust detection. In particular, it provides a valuable reference for the validation,
evaluation, and improvement of dust detection based on passive satellite sensors on a
global scale. Not only can developers compare the statistical climatology of dust from
passive sensors with CALIOP result, but they can also collocate the passive observations
with CALIOP at the pixel level to make direct comparisons and thereby adjust their
algorithms. In fact, CALIPSO is part of the A-Train satellite constellation, which makes the
pixel-level collocation with other A-Train sensors, such as the Moderate Resolution Imaging
Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) on Aqua satellite,
rather straightforward. In a number of previous studies, collocated CALIOP products
have been used to evaluate the physically-based dust detection and retrieval algorithms
developed for MODIS and AIRS [17,23–25]. It should be noted that the collocated CALIOP
products are mainly used as the “ground-truth” for validation and evaluation in these
studies, but not directly used in the development of the algorithms.

The recent advances of artificial intelligence have inspired several attempts to develop
dust detection algorithm for passive sensors, in particular MODIS, using machine-learning
(ML) or Deep-Learning (DL) methods [26–30]. These ML algorithms have demonstrated
excellent skills. For example, Boroughani et al. [27]. used three ML methods, Weights of
Evidence (WOE), Frequency Ratio (FR), and RF, to train a model to detect dust sources
from MODIS satellite image and reported over 80% accuracy rate for all three methods.
Although these emerging studies are very encouraging, they also have some limitations.
These studies either focused only on certain geographical regions (e.g., only Iran and Asian
regions in [27]) or investigated only a few number of cases (e.g., only 31 dust events are
studied in [30]). In addition, their training dataset is often based on “physically-based”
methods from passive sensors. For example, Shi et al. (2020) developed a SVM-based
algorithm to detect dust storms from MODIS satellite image and they used the UV aerosol-
index from the OMI (Ozone Monitoring Instrument) on board the Aura satellite, also part of
the A-Train, to assess the detection results [29]. As mentioned above, the physically-based
methods for passive sensors often suffer from a variety of problems, which could in turn
influence the ML-based methods if they are used as the training and/or testing dataset.

This study is motivated by the importance and wide application of satellite-based
dust detection, and inspired by the limited success of the above emerging studies. Our
main objective is to develop global dust detection algorithms based on ML methods to
detect dust pixels in cloud-free conditions from the daytime satellite images by the Visible
Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi-NPP satellite mission. We
use the collocated VIIRS and CALIOP dust detection product as the training and testing
dataset. Similar to MODIS, VIIRS is a passive sensor with 22 imaging and radiometric
bands covering wavelengths from 0.41 to 12.5 microns. Note that Suomi-NPP is not part of
the A-Train. Thus, the VIIRS-CALIOP collocation is more challenging than the MODIS-
CALIOP collocation. Nevertheless, VIIRS is chosen in this study for two important reasons.
First of all, MODIS sensors have operated for almost 20 years and are coming to the end
of their life cycle. In contrast, VIIRS flies not only on the Suomi-NPP mission but also the
follow-up Joint Polar Satellite System (JPSS) missions that are designed to serve the U.S. for
many years to come. Secondly, although CALIOP and MODIS can be easily collocated, the
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MODIS pixels along the CALIOP ground-track all have a similar near-nadir viewing angle
as a result of their almost identical satellite orbits. Because dust reflection in the visible and
the transmittance in the infrared are both dependent on the viewing angle, the limitation
in the viewing angle sampling can lead to biases in the training data and thereby the ML-
based algorithm [15,31–33], especially when the trained algorithm is applied to the pixels
off the collocated CALIOP track (hereafter referred to as the “off-track pixels”). In contrast,
because CALIOP and Suomi-NPP are in different satellite orbits, the collocated pixels can
sample a much larger range of viewing angle from −60 to 60 [34]. As shown later, our
ML-based detection algorithm shows similar skills both along and off the CALIOP track,
which probably benefited from the unbiased viewing angle sampling in the collocated
VIIRS-CALIOP data.

Another objective of this study is to test and compare different ML methods for dust
detection. More specifically, we will show results from five different ML based methods
including logistic regression (LR), K-nearest neighbors (KNN), random forest (RF), feed
forward neural network (FFNN), and convolutional neural network (CNN). The experience
gained from this comparison will provide valuable guidance for the future development of
ML based satellite remote sensing algorithms.

In comparison with the previous studies, this research is novel and important in
several regards. (1) The ML-based methods can help avoid many aforementioned problems
facing the physically based algorithms. For example, ML-based methods have been shown
in many studies to be much more flexible than the threshold-based methods, which helps
dust detection in miscellaneous environments encountered when the algorithm is applied
on a global scale. Moreover, in our study, instead of using a subset of VIIRS bands, which
is a common practice in physically-based methods, we use all the 16 moderate resolution
bands. (2) In comparison with the aforementioned ML-based dust detection studies, we
use the collocated CALIOP products as the training and validation data sets. Moreover,
we aim to develop a general detection algorithm that can be applied on a global scale,
which is more challenging and at the same time more useful than regional algorithms.
(3) Because similar VIIRS instruments will fly on several JPSS missions, our algorithms can
be easily adopted by these missions to generate a global dust detection data record that
could potentially last for several decades.

2. Data Description
2.1. CALIOP and VIIRS Products and Collocation

For this study, we use one year (i.e., 2014) of global collocated daytime VIIRS and
CALIOP data product developed by NASA’s Science Investigator-led Processing Systems
(SIPS) located at the Space Science and Engineering Center (SSEC) at the University of
Wisconsin-Madison. The SIPS are responsible for processing, reprocessing, production,
and general assessments of joint NASA/NOAA Suomi NPP VIIRS Atmosphere Products.
The collocated data contain merged aerosol/cloud layer retrievals from CALIOP version 3
(V3) operational products and the level-1b radiance observations from the 16 moderate-
resolution bands of VIIRS along with the viewing/illumination geometries (see Table 1).
A similar CALIOP-VIIRS collocated dataset has been successfully used in a previous
study to develop a machine-learning-based cloud detection and thermodynamic-phase
classification algorithm [34].

The theoretical basis of CALIOP feature detection and aerosol classification algorithms
and the implementations of the operational products have been described in a series
of papers [22,35–38]. Here, we only provide a very brief overview of the algorithms and
products that are most relevant to this study. In the operational CALIOP retrieval workflow,
the algorithm first identifies “features” (e.g., aerosol and cloud layers) in the lidar profile,
which is also known as vertical feature masking (VFM) [22,38]. The top and bottom
altitudes of the identified feature layers are estimated and the layer-integrated properties
(e.g., layer-integrated attenuated backscatter and depolarization ratio) derived. Then, each
feature layer is first classified into cloud or aerosol using a cloud-aerosol discrimination
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(CAD) algorithm [35,36]. An identified aerosol layer is further classified into several
sub-types, e.g., dust, smoke, and marine aerosols [37], followed by quantitative aerosol
optical depth retrievals. In the V3 operational algorithm, an aerosol layer is classified
as “pure dust” when the estimated particulate depolarization ratio is larger than the
predefined threshold (e.g., larger than 0.20) [37]. As its name suggests, this sub-type
consists primarily mineral dust aerosols. When dust aerosols are transported from the
source region, they can be mixed with local pollution, e.g., smoke and pollution. The V3
CALIOP operational product designates a special sub-types of aerosol, namely polluted
dust, to distinguish dust mixtures from pure dust. In this study, we include both pure dust
and dust mixtures (i.e., polluted dust) in our training dataset to train the machine-leaning
based detection algorithm. Although the highest possible spatial resolution of CALIOP
retrieval is 333 m, most aerosol retrievals are done at 5 km or coarser resolution based on
horizontally averaged lidar signals. As aforementioned, the spatial averaging is to beat
down the noises and enhance the signal-to-noise ratio. In this study, we use the standard
5 km aerosol layer products.

Table 1. Target variables used in the study based on CALIOP algorithm. Note that all cloudy-pixels
are excluded from the study.

Target Variables

Non-Dust No aerosol detected,
Other types of Aerosols

Dust
Pure Dust,

Dust mixtures,
Dust above or below other types of aerosols

The VIIRS on the Suomi-NPP is a whiskbroom radiometer by design. It has 22 channels
ranging from 0.41 µm to 12.01 µm. Five of these channels are high-resolution (375 m at
nadir) image bands that are primarily used for imaging. The rest sixteen channels serve
as moderate-resolution bands (750 m at nadir) or M-bands, which are primarily used
for quantitative operational retrievals, including aerosol, cloud, ocean color, and surface
temperature, for example. It should be noted here that the spatial resolution of VIIRS
M-bands is highest at the center of the scan (i.e., nadir viewing) and gradually decreases
with viewing zenith angle down to roughly 1.625 km at scan edge (i.e., most oblique
viewing). As a result of the average location of CALIOP tracks within VIIRS scan (see
examples in Section 5), the average spatial resolution of VIIRS M-bands in our collocation
data are roughly 1 km.

In this study, we use the collocated daytime CALIOP and VIIRS product developed by
NASA’s SIPS which merges the 5 km CALIOP aerosol and cloud layer products with the
collocated standard VIIRS level-1b geolocated radiance product. The collocation algorithm
accounts for not only the temporal-spatial differences between the two instruments but
also the parallax effects caused by the differences in viewing geometry. The details of
the collocated algorithm are described in Holz et al. [39]. As illustrated in Figure 1, to
homogenize the spatial resolution, we first collocate the VIIRS 1 km M-band pixels with
the CALIOP 5 km aerosol retrievals, and assign all the collocated VIIRS pixels within a
CALIOP pixel as the same as the CALIOP aerosol classification. We would like to point
out here that the original collocation product from SIPS includes only VIIRS pixels that
are exactly on the track of the CALIOP (i.e., green colored pixels in Figure 1, hereafter
referred to as on-track pixels). As explained in Section 3, in this study, we would like to
explore whether the image context would help improve dust detection. Motivated by this
consideration, we added to the collocation data four more VIIRS pixels that are adjacent
to the on-track pixels across the CALIOP track (i.e., yellow-colored pixels in Figure 1,
hereafter referred to as adjacent pixels). Although both instruments can operate in both
daytime and nighttime, in this study, we focus only on daytime because VIIRS loses all
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the solar-reflective bands as a passive sensor in the nighttime, which seriously limits its
capability for dust detection.

Figure 1. Illustration of on-track, off-track, and adjacent VIIRS pixels as well as CALIOP track.

2.2. Training and Testing Data

Tables 1 and 2 show the target and predictor variables used for the training of ML
methods in this study. As aforementioned, our objective is to detect dust in cloud-free
conditions. Thus, the first step is to separate the collocated pixels into two groups: cloudy
(where CALIOP detects one more cloud layer) and cloud-free (where CALIOP detects no
cloud). We exclude all cloudy pixels in our study (both training and testing). On the one
hand, the exclusion of cloudy pixels makes the training process less challenging. On the
other hand, however, it leads to a couple of limitations. First, because our dust detection
algorithm is only applicable to cloud-free conditions, the accuracy of dust detection is
partially dependent on the accuracy of cloud mask. The cloud mask errors, for example
misidentification of dust as cloud (or vice versa), can in turn affect our dust detection result.
Second, it is known from previous studies that dust aerosols can often be found above
and/or below clouds [40]. These coexistent conditions of dust and cloud are excluded
from the training for simplicity. When applied to real observations, a reliable cloud mask
algorithm is expected to label most such pixels as cloudy.

After the cloud screening, we then separate all the cloud-free pixels into two groups,
“dust” or “non-dust”, as the predictor for the training (see Table 2). A cloud-free collocated
pixel is considered to be dust when one or more dust or dust mixture layers are detected
by CALIOP in the whole atmospheric column. In contrast, a cloud-free collocated pixel
is considered to be non-dust when no dust or dust mixture layer is detected. It should
be noted that, in some cases, a dust layer may be located above or below another type of
aerosol (i.e., separate and not mixed). Such pixels would be labeled as dust in our study
regardless of whether the dust layer is the dominant type of aerosols in the column in
terms of aerosol optical depth. In other words, our classification of dust vs. non-dust is
designed to maximally preserve the dust detection by CALIOP. Finally, it should be noted
that, in some relatively rare cases, CALIOP does not detect any aerosol layer in the column.
Such pixels are also labeled as non-dust.
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Table 2. Predictor variables used in the study based on VIIRS measurement. Variables marked in bold represent the top nine features
selected by RF, and variables marked in italic represent the top nine features selected by FFNN.

Predictor Variables

Radiances from VIIRS M-bands (16)

(band center in µm)

M01 (0.412 µm), M02 (0.445 µm), M03 (0.488 µm), M04 (0.555 µm),
M05 (0.672 µm), M06 (0.746 µm), M07 (0.865 µm), M08 (1.240 µm),

M09 (1.378 µm), M10 (1.61 µm), M11 (2.25 µm), M12 (3.7 µm),
M13 (4.05 µm), M14 (8.55 µm), M15 (10.763 µm), M16 (12.01 µm)

Geometric Variables (4)

Solar Azimuth Angle (SAA),
Solar Zenith Angle (SZA),

Viewing Azimuth Angle (VAA),
Viewing Zenith Angle (VZA)

Observation Information (3)
Day of Year (1–365),

Latitude,
Longitude

The target variables for the training are summarized in Table 2. A total of 23 predictor
variables from VIIRS will be used to perform the binary classification (i.e., dust vs. non-dust)
on target variables from CALIOP. The predictor variables include the radiance observations
from all the 16 VIIRS M-bands, four variables about the solar and viewing geometries,
and three variables about the time (date) and location (i.e., latitude and longitude) of
the pixel. As mentioned in the Introduction, many previous studies often use only a
subset of available radiance observations from the passive sensors for physics-based dust
detection [25]. In contrast, we use all the 16 M-bands in this study to maximally preserve
and utilize all the information from VIIRS M-bands, which is an advantage of the ML
methods in comparison with the physics-based methods. The geometric variables are
included in the training because the reflection of sunlight by dust aerosols is dependent
on solar and viewing geometries. In addition, the transmittance and emission of a dust
layer in the thermal infrared region are also dependent on viewing geometry. The time and
geo-location of the pixel are also included because dust events are known to be dependent
on season and geo-location.

For comparison purpose, four input data structures are constructed for the training
based on different combinations of pixel and predictor variable selections. In terms of VIIRS
pixel section, the “0-D” input data structure includes predictor variables from only a single
on-track VIIRS pixel (i.e., green pixels in Figure 1) to predict the corresponding dust or
non-dust classification from CALIOP. To utilize the potential context information provided
by the adjacent pixels (i.e., yellow pixels in Figure 1), the “2D” input data structure includes
predictor variables from five VIIRS pixels (one on-track and two adjacent pixels) to predict
the corresponding dust or non-dust classification from CALIOP corresponding to the center
on-track pixel. In terms of predictor variable selection, all 23 predictor variables in Table 2
are used in the baseline input data structure (referred to as “allVar”). As explained later
in Section 3.6, we also select a subset of nine predictor variables based on the feature
importance analysis of the RF method, which include five M-bands and four solar-viewing
angles (marked in bold in Table 2, and referred to as “selectVar”). Based on the different
combination of “0-D” vs. “2D” and “allVar” vs. “selectVar”, four sets of input data
structures are constructed to train all 5 ML methods. The results will be evaluated in
Section 4.

To train and test the ML based dust detection models, the collocated data are split to
training and testing data with a 10-day interval. That is, data are designated to be testing
data for every 10 days, and, otherwise, training data. As such, the training and testing data
accounts for about 89% and 11% of the total data, respectively (i.e., all cloud-free pixels).
Furthermore, because the optical characteristics are very different between land and the
ocean, separate models are developed and trained for land and ocean.
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Statistics of training and testing data are depicted in Figure 2a,b. In the training data,
dust pixels account for about 57% and 15% of all cloud-free pixels over land and ocean,
respectively, which is expected because dust aerosols all originate in land and are only
transported over to the ocean. Evidently, the ratios of dust to cloud-free pixels in the testing
data (Figure 2b) are nearly identical to those in the testing data. Figure 2c,d show the
global dust frequencies derived based on the training and testing data, respectively. The
dust frequency is defined as the ratio of dusty pixels to the total cloud-free pixels within
a 5 × 5 latitude-longitude grid. Over land, high dust frequencies are observed in those
well-known dust laden regions, such as Sahara, central Asian, and Australia. A relatively
high dust frequency is also observed in the tropical north Atlantic region in the training
data (Figure 2c), which is expected because this is the outflow region of Sahara dust. On
the other hand, some elevated dust frequency (>40%) is also observed over the Southern
Ocean and the Antarctica continent. Although the dust from the Patagonian and Australian
deserts can be transported to Southern Ocean, these transported dust events are likely to
be intermittent and relatively rare in comparison with the dust events in the tropical north
Atlantic. Therefore, the high dust frequency in these regions are likely to be the retrieval
artifacts of CALIOP. The dust frequency map derived based on the testing data in Figure 2d
is in overall good agreement with that based on the training data in Figure 2c, although it
is noisier due to the small sampling rate.

Land Ocean Land+Ocean

0.5e6

1.0e6

1.5e6

2.0e6

2.5e6

3.0e6

3.5e6

56.58%
14.63% 33.35%

43.42% 85.37%

66.65%

(a) Training Dataset (88.55%)
non-Dust
Dust

Land Ocean Land+Ocean

0.5e5

1.0e5

1.5e5

2.0e5

2.5e5

3.0e5

3.5e5

4.0e5

57.02%
15.64%

34.54%

42.98%
84.36%

65.46%

(b) Testing Dataset (11.45%)
non-Dust
Dust

(c) Training Dust Distribution

0 20 40 60 80 100
Dust Fraction (%)

(d) Testing Dust Distribution

0 20 40 60 80 100
Dust Fraction (%)

Figure 2. (a,b) Distribution of clear sky and dust over land and ocean, for both training and testing
data. (c,d) distribution of dust for training and testing data. Spatial distribution is averaged with
5× 5 latitude, longitude grid box.

Overall, two points are evident from Figure 2: First, the statistics and geographical
distributions of the training and testing data are almost identical, which means there are
no sampling bias generated by our method of splitting the data. Second, even though the
CALIOP operational retrieval is considered as the state-of-the-art method to detect dust, it
still faces some challenges. Inevitably, our algorithms that are trained based on CALIOP
retrievals will also face these challenges as explained in Section 4.
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2.3. Physics-Based Model (PHYS) from NOAA for Off-Track Comparison

It must be noted that, although our ML methods are trained and tested using collocated
data on the CALIOP track, our ultimate goal is to apply the dust detection algorithm to the
whole swath of VIIRS to achieve the best possible spatial sampling. One challenge facing
us is how to evaluate the VIIRS dust detection results off the track of CALIOP when both
the training and testing data, as described in the last section, are on track. To overcome this
challenge, we introduce a physics-based VIIRS aerosol detection product (ADP) developed
by a NOAA team [24,41]. It will be referred to as the PHYS model for short. This product
identifies dust based on the dust spectral signatures, especially its strong absorption at
ultraviolet (UV) and blue channels and its thermal signals. The product flags out smoke
and dust over global cloud free and snow/ice free surfaces at 0.75 km spatial resolution
at nadir view. Absorbing aerosol index (AAI) and Dust Smoke Discrimination Index
(DSDI) are generated using the VIIRS M1 (0.415 µm), M2 (0.445 µm), and M11 (2.25 µm)
bands following

AAI = 100 ∗ [log10(RM1/RM2)− log10(R′M1/R′M2)] (1)

DSDI = 10 ∗ [log10(RM1/RM11)] (2)

where R is the observed top of atmosphere (TOA) reflectance and R′ is the reflectance
from Rayleigh scattering. Using empirical thresholds, predefined thresholds that are
suitable over general conditions are used to identify dust for each VIIRS pixel. The
estimated accuracy for dust detection based on this physics-based ADP is 80% over land
and over ocean. In addition, the detection limit of the VIIRS ADP product is set as for only
smoke/dust events with AOD > 0.2, by considering the inability to separate aerosol type
for AOD < 0.2 and threshold development is based on events with AOD > 0.2 [24,41]. It
should be noted that the comparison of our ML based methods and the this PHYS model
can be only considered as an evaluation rather than a validation because all the detection
methods are designed based on different motivations for different purposes and they all
have some inherent advantages and limitations.

In summary, we will train our ML based VIIRS dust detection methods based on the
collocated on-track CALIOP data. Then, we will validate the methods using the on-track
testing data. Finally, we will apply our methods to the whole VIIRS swath (i.e., off-track)
and compare the results with NOAA’s PHYS model both on and off the CALIOP track.

3. ML Model Development

As explained in the Introduction, one objective of this study is to test and compare
different ML methods for dust detection. More specifically, five different ML based methods
are developed and their performances on dust detection are compared. These methods
include logistic regression (LR), K-nearest neighbors (KNN), random forest (RF), feed
forward neural network (FFNN), and convolutional neural network (CNN). Because they
are commonly used methods, we only provide a brief introduction of each method here.

3.1. Logistic Regression (LR)

Logistic regression (LR) is a classification model that uses a logistic function, which
converts the multivariate predictor variables into the output between 0 (clear sky) and 1
(dust). The main advantage of using LR is that the model is relatively easy to interpret
in a physical sense due to its simple nature [42]. LR has been utilized in satellite image
classification, such as forest classification [43] and tree defoliation [44] with successive
performance. In this study, LR with L2 regularization is applied.

3.2. K-Nearest Neighbors (KNN)

As a non-parametric method, K-nearest neighbors (KNN) methods classify the input
features into two or more classes by assigning the input features to the class that is most
common among its K nearest neighbors. The main advantage of using KNN is that, since
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it considers the K nearest testing data, the classes do not have to be linearly separable.
However, KNN could be very sensitive to imbalanced data and outliers. KNN has been
used to estimate aboveground carbon from satellite imagery [45]. In this study, KNN with
10 nearest neighbors, with Euclidean distance weights selected as hyper-parameters, which
are selected by grid search algorithm.

3.3. Random Forests (RF)

Random forests (RF) are an ensemble learning technique that performs classification
or regression by building a structure of multiple decision trees. The performance of RF
is considered to be comparable with the best supervised learning algorithms. There are
multiple advantages of using RF. (1) Since RF works with the subsets of the data, it could
cope better with high dimensional data, known as the “curse of dimensionality”. (2) RF
can provide a reliable feature importance estimate, which could be used to reduce the
dimension of the predictor variable [46]. RF with 100 max depths and 500 estimators is
selected using the gridsearch algorithm.

3.4. Feedforward Neural Networks (FFNN)

Recently, artificial neural networks (ANN) have been widely used in remote sensing
data. The fundamental structure of ANN consists of input layer, hidden layer(s), and
output layer. There are variations of this structure for different objectives, such as recurrent
neural networks, long short-term memory network, generative adversarial network, etc.
The biggest advantage of using ANN is that is is able to learn on nonlinear and complex
relationships. Furthermore, ANN does not require any restrictions on the input variables,
such as multicollinearity, and distribution of predictor variables [47]. Here, we implement
one of the most basic structures of ANN, a feedforward neural networks (FFNN). FFNN
is a type of ANN with the connection between the nodes does not form a cycle or a loop,
and only structured with input layer, hidden layer, and output layer. In this study, FFNN
with three hidden layers is used. Batch size is set to be 256, with 2000 epochs. Batch size is
selected with a gridsearch algorithm. Five different structures with different number and
size of hidden layer were tested, and the best performing structure was selected. Although
tested structures did not show significant difference in performance, it should be noted
that, with more detailed tuning, FFNN has a room to improve.

3.5. Convolutional Neural Networks (CNN)

Convolutional neural networks (CNN) is another variation of ANN, most applied
to visual imagery analysis [48]. The main advantage of using CNN is that CNN is able
to capture the spatial dependencies in an image by applying filters. Furthermore, CNN
extracts and reduces images without removing critical features. CNN has four different
types of layers, input layer, convolution layer, pooling layer, and fully connected layer,
respectively. In the input layer, CNN takes an input variable as an image, with a shape of
image width × image height × channels. In this study, this corresponds to surrounding
data width (5) × surrounding data height (5) × predictor variables (23). The convolution
layer extracts the high-importance features from the image with a spatial filer, which is
decided to be a 3× 3× 1 filter in this study. The pooling layer extracts the dominant features
from the convolved data. In this study, max pooling is used to return the maximum value
from the image covered by the filter. Finally, the model goes through a fully connected
layer to make a decision. CNN has been applied to various problems in satellite imagery
such as determining land type classification [49] and cloud classification [50]. CNN with
one convolution layer with 2× 2 kernel size and ReLu activation function is used. After
the convolution layer, we used two dense layers with ReLu activation function, and one
dense layer with sigmoid function for classification. Batch size is set to be 512, with
2000 epochs. Batch size and the number of epochs are selected with a gridsearch algorithm.
Five different structures with different number and size of hidden layer were tested, and
the best performing structure was selected.
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3.6. Input Data Selection

As mentioned in Section 2.2, both 0-D and 2D input data structures are tested for
each of the model, except for the CNN because it takes only 2D image as an input. In
addition to pixel selection, we will also test the impact of predictor variable selection. As
aforementioned, the feature importance analysis of the RF method provides us with a
useful estimate of the usefulness of each predictor variable in Table 2 for dust detection.
Using this analysis, we are able to rank the feature importance of all 23 predictor variables
and selected nine variables (highlighted in bold in Table 2) with feature importance higher
than the mean value. These selected variables include 4 M-bands (M09, M10, M11, M12 and
M16) and two solar-viewing angles (SZA and SAA), as well as two pieces of geolocation
information (Lat and Lon). The selected M-bands are in either the shortwave infrared
(i.e., M09 to M12) or thermal infrared (i.e., M16). These bands have also been used, either
separately or in combinations, in the previous physics-based dust detection algorithms.
However, it is interesting and somewhat surprising to see that not a single visible band
(e.g., M05) is selected, even though visible bands are frequently used in the literature for
dust detection [20,25]. The selection of two solar-viewing angles is, on the other hand,
not surprising because all the selected M-bands are solar-reflective bands. In addition,
as the occurrence of dust events is very dependent on the region, the selection of two
pieces of geolocation information of Lat and Lon is not unexpected. In addition, we used
permutation importance from FFNN to compare the importance of features with RF. The
top nine features from FFNN and RF was mostly common, but, in FFNN, latitude and
longitude were excluded form the top 9 features, but M08 and M04 were included.

Based on different combinations of pixel selection and predictor variable selection, we
prepared four sets of input data structures, 0D-allvar (23 predictor variables), 0D-selectvar
(9 predictor variables), 2D-allvar (5× 5× 23 predictor variables), and 2D-selectvar (5× 5× 9
predictor variables) for each of the cases. A comparison between the 0-D and 2D results
would help us understand to what extent the pixels adjacent to the CALIOP track provides
additional information for dust detection on the CALIOP track. A comparison between
“allVar” and “selectVar” results will help us understand if the same level of accuracy can be
achieved by using a reduced number of predictor variables.

4. Model Evaluation
4.1. On-Track Validation and Comparison of ML Based Models

Five models (LR, KNN, RF, FFNN, and CNN) are trained with the training data
based on the aforementioned four different sets of input data structures (0D-allvar, 0D-
seectlvar, 2D-allvar, and 2D-selectvar). The training results are tested on the testing data
(i.e., collocated CALIOP data). The overall accuracies of each model–variable combination
after being aggregated over land, ocean, or the whole globe are compared in Figure 3.

A comparison between Figure 3a,b clearly reveals that all models perform better over
the ocean compared to land. This is expected as the land surfaces make complicated lower
boundary conditions compared to the ocean. Reflections by ocean surface are generally very
small and thus the proportion of satellite received radiance that is from the atmospheric
particles are larger. Another reason is that the radiative characteristics of the dust can be
similar to those from semi-arid land surfaces, which makes it difficult to distinguish dust as
the surface signals dominate the atmospheric signals. For both 0D and 2D cases, the allVar
case tended to outperform or showed similar performance with selectVar in FFNN. This
shows that the advantage of using ANN is that it can handle the large predictor variables
itself without feature selection. This is similar to RF and CNN as well. FFNN outperformed
CNN for about 1.7% accuracy. This shows that utilizing spatial characteristics of 5× 5
VIIRS pixel window did not contribute to the model, compared to simply flattening the
5× 5 window. Generally, CNN is best used for the image data, which usually consists
hundreds or thousands of pixels. In that context, in future studies, a bigger window size
could be used to improve the performance of CNN, since 5× 5 window might be too small
for CNN to perform efficiently.



Remote Sens. 2021, 13, 456 12 of 24

LR KNN RF FFNN CNN
60
65
70
75
80
85
90
95

100

Ac
cu

ra
cy

 (%
)

73.73% 71.97%
76.21%

80.81%
78.04%

(a) Land
0D - allVar
0D - selectVar

2D - allVar
2D - selectVar

LR KNN RF FFNN CNN
60
65
70
75
80
85
90
95

100

Ac
cu

ra
cy

 (%
)

74.4%

84.23%
87.74% 88.51% 87.84%

(b) Ocean

LR KNN RF FFNN CNN
60
65
70
75
80
85
90
95

100

Ac
cu

ra
cy

 (%
)

74.1%
78.58%

82.48%
84.99% 83.31%

(c) Land + Ocean

Figure 3. Accuracy of five different ML based models with different structures of predictor variables.
Accuracy is calculated as total number of correct predictions (both clear sky and dust) divided by
total number of test dataset. Accuracy plotted on top of each bar represents the highest accuracy
among the different structures of predictor variables, for each of the methods. (a) Land; (b) Ocean;
(c) Land + Ocean.

For each method, the best performing feature cases are selected and compared for a
statistical significance of performance. With a t-test, FFNN outperformed other methods at
the 95% confidence level. CNN and RF did not show significant performance difference
between them at the 95% confidence level; however, both outperformed KNN and LR.
KNN also significantly outperformed LR.

As seen in the figure, the best model–predictor data combination is FFNN using the
2D-allvar, with overall accuracy of 84.99%. Thus, hereafter, we only analyze results from
FFNN with a 2D-allvar predictor variable.

Figure 4 shows the global map of dust fraction derived from CALIOP (Figure 4a)
and the collocated on-track VIIRS observations using the FFNN method (Figure 4b). As
expected, FFNN is fairly good at resembling the spatial pattern of dust in CALIOP. CALIOP
and FFNN present a 30% to 50% dust occurring fraction in central Asia, North America,
Australia, South America, and at the tip of South Africa, which are the regions that are
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known as dust emission sources. However, CALIOP reports almost a 100% dust fraction
in the Antarctic and adjacent Southern Ocean. As explained in Section 2, this is mostly
misidentification due to retrieval artifacts. Inevitably, the FFNN method inherited this
flaw from CALIOP and also reports high dust fractions in these regions. Nevertheless, it is
evident from the figure that FFNN is able to closely reproduce the dust fraction map from
CALIOP, with up to a 15% difference in dust distribution (Figure 4c), depending on the
location. When averaged over the globe, as shown in Figure 4d, the FFNN-based VIIRS
dust detection is able to reproduce the seasonality of dust observed by CALIOP, attesting
to the usefulness of the detection for scientific studies.
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Figure 4. (a,b) Spatial dust distribution for all test days. (a) CALIOP and (b) FFNN shows the dust
distribution over CALIOP and VIIRS collocated track. Dust distribution is plotted with 5× 5 lat-lon
grid; (c) spatial difference between FFNN and CALIOP dust fraction; (d) monthly time series of
CALIOP and FFNN dust fraction over the entire globe to show the seasonality.

4.2. On-Track Comparison of FFNN with the CALIOP and PHYS Model

To further understand the differences between CALIOP, FFNN, and PHYS, we com-
pared the dust detection from these three products on a pixel-to-pixel basis for the entire
testing dataset on the CALIOP track excluding latitudes that are higher than 70◦ (Figure 5).
For CALIOP and FFNN comparison, we used a CALIOP cloud mask to screen out cloudy
pixels. Over land, CALIOP reports an average dust fraction of 51%, which is much higher
compared to only 12% over ocean. As explained in Section 2, this is mainly because dust
aerosols originate in land and only part of these dust plumes transport over the ocean. The
larger portion of over land dust frequency is also partly due to the fact that a dust conser-
vative screening method is used to identify dust plume. In other words, the definition of
“dusty” in this study requires only one layer of dust to be detected by CALIOP through the
entire atmospheric column. Finally, although really rare in the mid-to-high latitude region,
it is also possible that CALIOP could misidentify cirrus clouds as dust if the clouds are too
low in altitude.

Nevertheless, using CALIOP as the standards, FFNN shows a higher accuracy of
prediction dust over both land and ocean. Overland FFNN true positive rate is 83% and
false positive rate is 21%. The false positive rate is much lower than the true positive rate,
which means that FFNN has the ability to separate surface signals with dust signals. It also
could be that, over arid and semi-arid areas, where it is the hardest to detect dust, a high
frequency of airborne dust occurs. Over the ocean, FFNN has a lower true positive rate of
33% with a very small false positive rate of 2%. The lower true positive rate indicates that
FFNN has trouble separating dust from other aerosol types, which is also included in the
clear sky categories. The very low false positive rate is partially due to the fact that, over
the ocean, the occurrence of aerosol features might be much smaller than over land.
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Figure 5. Comparison of CALIOP product, FFNN prediction, and PHYS prediction. First, two
stacked bar graphs show the comparison between CALIOP and FFNN. Numbers in CALIOP bar
show the percentage of dust and non-dust over the total number of CALIOP data, while the numbers
in FFNN bars represent the conditional accuracy of the FFNN regarding CALIOP defined dusty or
clear. Three stacked bars on the right depict the comparison between CALIOP, FFNN, and PHYS
under the PHYS ADP cloud mask. Panel (a) shows the comparison over land, while panel (b) shows
the comparison over the ocean.

When comparing the PHYS model results with the CALIOP classification, there is
a larger amount of cloud identified by PHYS when CALIOP products identify as dusty
or clear skies (about one third over dusty conditions and about half when it is clear for
both overland and ocean). The cloud prediction of PHYS is not generated in the ADP
algorithm, but an upper stream cloud mask product [51]. Before the ADP algorithm is
attempted, pixels are first filtered to ensure that the observing conditions are suitable
for retrieval. Conditions such as clouds, cloud shadows, snow/ice coverage, or extreme
viewing/illuminating geometries will be removed before retrieval. The PHYS model only
predicts clear sky, dust, smoke, and ash for the remainder of the pixels. One of the known
issues of a passive satellite aerosol retrieving algorithm is that optically thick aerosol plumes
can be mistaken as clouds due to their similar spectral signals [52]. Another possibility that
causes the disagreement in cloudiness between the two methods is the spatial resolution.
Although this issue is mysterious, it is beyond the scope of this study. In addition, because
Figure 5 only shows the results between 70◦S and 70◦N, another possibility of causing the
disagreement, which is due to CALIOP falsely labeling low altitude ice clouds near polar
region as dust, is mostly excluded from the statistics.

To remove the discrepancies due to cloud masking, we applied the ADP cloud mask
to collocated CALIOP and FFNN results. After filtering by the ADP cloud mask, more than
one third of CALIOP identified dust is removed over land and ocean. Under non-dust
conditions, more than half of data are filtered over land and about half masked over the
ocean. The remaining dusty percentage based on CALIOP is 33% over land and 8.2%
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over ocean. Over land, PHYS significantly under-predicts dust (39.3% from PHYS vs.
90.7% FFNN) with a similar false alarm rate as FFNN under non-dusty conditions. Over
the ocean, the PHYS method shows a much higher false positive rate when compared
with FFNN under non-dust conditions. As we mentioned before, CALIOP can be “too
sensitive” to dust when very small dust components exist in the atmosphere or thin cirrus
clouds present at low altitudes. However, only one condition leads to CALIOP incorrectly
identifying dusty pixels to clouds, which is when the dust layer is very optically thick,
which occurs mostly near the dust source region over land and very little in the transported
dust layer over the ocean. Thus, the PHYS identified dusty pixels (more than half) under
CALIOP non-dust conditions can be caused by mis-classifying other types of aerosols as
dust. Over the ocean, PHYS has a slightly lower true positive rate when compared to
FFNN. Excluding clouds, PHYS shows the true positive rate of 29% and 24% and the false
positive rate of 40% and 53% for over land and ocean, respectively. The low true positive
rate could be due to the different definitions applied between active sensor and passive
sensor in terms of defining dust. For CALIOP, we consider an atmospheric column dusty if
there is any dust observed in that vertical profile. FFNN follows the same definition since
it is trained based on CALIOP data. This definition captures much more very low dust
loading compared with what PHYS can do. The high false positive rate for PHYS, especially
over the ocean, indicates that there is misclassification of other types of aerosols into dust
by PHYS. Note again that our study excludes any cloudy scenes including thin cirrus
identified by CALIOP. Under this circumstance, CALIOP has a reliable ability to separate
dust from other aerosols under clear sky. Overall, FFNN can reproduce the CALIOP’s
dust classification with a better accuracy than PHYS when following the CALIOP dust
definition which includes conditions with very low dust loading.

5. Evaluation of FFNN-Based VIIRS Dust Detection off CALIOP Track
5.1. Entire VIIRS Granule Run for Days 75 and 224

The previous analyses are all based on the CALIOP “truth” data, which is on its
narrow track. To understand the ability of FFNN dust detection off the CALIOP track, we
selected two days from the test days (day 075, which is March 16 and day 224, which is
August 12). The same cloud mask that applied to the ADP product is used for masking
the off-track VIIRS granule before feeding into FFNN to preserve clear-sky assumption.
Figure 6 shows the dust distribution of CALIOP (collocated on track), FFNN (collocated
on track), and FFNN (off-track) for days 075 and 224.

As seen in the figure, on-track and off-track FFNN dust detection accuracies mostly
have a 10% difference, which is comparable to the difference between FFNN and CALIOP
on the CALIOP track (see Figure 4c). This is very encouraging because it indicates that,
although FFNN method is trained on the CALIOP track, it can be applicable for off-track
pixels and maintains a similar accuracy. Difference in dust proportion is about 2% and 4%
for both days. Since the coverage of collocated track and entire granule are different, we
cannot expect the dust distribution to be the same for on-track and off-track. However,
we also cannot expect the distribution to be very different because collocated track is a
subset of the entire VIIRS granule, and it is fairly well distributed over the globe. In that
context, 4% difference in the dust distribution is reasonable to assume that the result of
FFNN model is consistent in both on and off-track.
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Figure 6. Predicted dust distribution for day (a) 075 (16 March 2014) and (b) 224 (12 August 2014).
CALIOP and FFNN-onTrack shows the CALIOP product and FFNN prediction over the CALIOP
and VIIRS collocated track, while FFNN-offTrack shows the FFNN prediction over the entire VIIRS
granule for each day.

Figures 7 and 8 show the dust occurrence frequency distribution of CALIOP product,
on-track FFNN, off-track FFNN, and PHYS for day 075 (Figure 7) and day 224 (Figure 8).
For day 075 (Figure 7), CALIOP and on-track FFNN shows a similar pattern of dust
distribution, except for Antarctica, where FFNN overestimates dust frequency. Off-track
FFNN also shows similar distribution with CALIOP in terms of both spatial distribution
and occurrence of dust. Off-track FFNN also expands the small dust frequency over the
ocean between south Africa and South America shown in an on-track CALIOP map. The
visual inspection of RGB images of this region shows that transported dust exists and
FFNN captures this feature. In on-track FFNN, there is couple elevated dust frequency
pixels shown over the ocean west of Australia. These features are not shown in an on-track
CALIOP map and is much reduced in off-track FFNN results. This indicates that the
model may capture the feature better with more spatial coherence data. PHYS shows dust
occurrence at similar geolocations with much smaller magnitude, which is consistent with
our previous analyses. It is encouraging that none of the off-track results from FFNN
and PHYS show any dust occurring over North and South America, as the CALIOP map
indicates that there are no dust activities over these regions. Day 224 (Figure 8) shows a
similar attribute to day 075 that both on- and off-track FFNN reproduce what CALIOP
observes well at most of the region with one exception over North America, where CALIOP
shows a small amount of dust occurrence over eastern North America, but off-track FFNN
flags a lot more over this region. Another interesting observation is that both on-track maps
show isolated high dust frequency in the middle of the Atlantic, where off-track FFNN
shows the transport of dust plume from North Africa to this region. PHYS again captured
a smaller amount of the significant dust activities that are identified by CALIOP. It barely
shows the North Africa dust event with a very small magnitude, but yet we can still see
that there is trace of dust plume from North Africa to the mid-Atlantic ocean. The PHYS
also does not pick up the dust occurrence over South America, which is again visually
identified using RGB images. It is worth mentioning that, over Asia, March is the active
dust season and August is relatively calmer. We can see the magnitude differences over
Asia between off-track FFNN results from these two days.
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Figure 7. Dust distribution of day 075 for (a) on-track CALIOP product, (b) on-track FFNN prediction,
(c) off-track FFNN, and (d) off-track PHYS. Missing observations where there are no CALIOP overpass
are marked as white.
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Figure 8. Dust distribution of day 224 for (a) on-track CALIOP product, (b) on-track FFNN prediction,
(c) off-track FFNN, and (d) off-track PHYS. Missing observations where there are no CALIOP
overpasses are marked as white.

5.2. Off-Track Case Studies

For the selected two days, subsets of granules are selected for both off-track FFNN
and PHYS to compare with images from Wisconsin’s VIIRS quicklook, including RGB,
AOD, and Angström Exponent parameter (https://sips.ssec.wisc.edu/#/). The Angström
Exponent is a retrieved parameter to show the size of the retrieved aerosol. It shows
how coarse the particle is within the aerosol plume that can best match the the observed
radiance. The larger the value is, the smaller the particle size is. Generally, we consider
less than 0.4 of the Angström Exponent to be dust. Because of the lacking of ground truth
(CALIOP) for the off-track data, we use the RGB images, the magnitude of AOD, which
shows the amount of aerosol loading, along with the Angström Exponent, which indicates
dust or not to compare with off-track FFNN and PHYS results. Among a few cases, we
select three different cases that show the characteristics of FFNN and PHYS.

Figure 9 shows a case over the Arabian peninsular on day 224 where FFNN and
PHYS agree very well with each other in terms dust detection. The large value of AOD in

https://sips.ssec.wisc.edu/#/
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Figure 9e suggests this case is a high dust loading case. Figure 9e also shows the CALIOP
track and its dust product that are residing in this target region (see solid green and black
line in panel e). As it can be seen in the figure, FFNN agrees very well with the CALIOP
product on the CALIOP track, and predicts a high dust loading event in this region. PHYS
also captures the similar pattern of dust, although the overall magnitude of dust loading is
less significant compared to FFNN.

(a) Day 224 10:24 True Color

(c) Day 224 10:24 Aerosol Optical Thickness (d) Day 224 10:24 Angstrom Exponent

(b) Day 224 10:24 Clear Sky Confidence

(e) Day 224 10:24 Off-Track FFNN
Cloud / Dust Free
Dust

Cloud
Missing Observation

0 20 40 60 80 100
Dust Percentage (%)

(f) Day 224 10:24 PHYS Model
Cloud / Dust Free
Dust

Cloud
Missing Observation

0 20 40 60 80 100
Dust Percentage (%)

Figure 9. A case study over Arabian peninsular on day 224, at 10:24. (a–d) depict images from
Wisconsin’s VIIRS quicklook, where (a) represents the true color, (b) Clear Sky confidence, (c) Aerosol
Optical Thickness, and (d) Angström Exponent; (e) FFNN results in the same geolocation. Results
are plotted in a 0.1× 0.1 latitude and longitude grid, and the percentage of dust within the grid
are shown as colors. Thin magenta lines show the CALIOP swath of this region. Pixels within the
magenta lines are the CALIOP product. (f) same as (e), but for the PHYS product.

Figure 10 shows a case in Southern Australia on day 075, where the FFNN detects
significant dust loading (Figure 10e) and PHYS detects almost none (Figure 10f). As seen
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from Figure 10c, the aerosol optical thickness in this case is quite small, mostly around
0.1. This thin layer of dust is not captured in PHYS, but it is captured both by CALIOP,
albeit on its track only, and by FFNN both on-track and off-track. This is also expected
from Figures 7 and 8, where CALIOP and FFNN predicted a high frequency of dust over
Australia, which is not seen in PHYS. Since CALIOP also captures dust in this regions,
as shown in Figure 10e, the difference is probably due to the different definitions of dust
event applied to CALIOP and PHYS, where CALIOP is more sensitive to a small amount
of dust layers. However, it is debatable if this should be considered as a dust event, given
the small amount of dust loading.

(a) Day 075 04:54 True Color

(c) Day 075 04:54 Aerosol Optical Thickness (d) Day 075 04:54 Angstrom Exponent

(b) Day 075 04:54 Clear Sky Confidence

(e) Day 075 04:54 Off-Track FFNN
Cloud / Dust Free
Dust

Cloud
Missing Observation

0 20 40 60 80 100
Dust Percentage (%)

(f) Day 075 04:54 PHYS Model
Cloud / Dust Free
Dust

Cloud
Missing Observation

0 20 40 60 80 100
Dust Percentage (%)

Figure 10. A case study over Arabian peninsular on day 075, at 04:54. (a–d) depict an image from
Wisconsin’s VIIRS quicklook, where (a) represents the true color, (b) Clear Sky confidence, (c) Aerosol
Optical Thickness, and (d) Angström Exponent; (e) FFNN results on the same geolocation. Results
are plotted in a 0.1× 0.1 latitude and longitude grid, and the percentage of dust within the grid
are shown as colors. Thin magenta lines show the CALIOP swath of this region. Pixels within the
magenta lines are the CALIOP product. (f) same as (e), but for a PHYS product.

Finally, Figure 11 shows a case in the Sahara region on c, where the FFNN detects
substantially more dust than the PHYS model. As seen from Figure 11b,c, the AOD in this
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case is quite high and the Angstrom exponent is small, indicating this to be a high dust
loading case. The same as the previous two cases, the FFNN agrees very well with the
CALIOP on the CALIOP track (Figure 11e). It also detects large areas of dust in this granule,
for example over the eastern part of the granule where the AOD is high and Angstrom
exponent is small. In comparison, the PHYS method does not label the aerosols in this
region as dust. There could be multiple reasons for these differences such as the strong
surface signal overpowering the atmospheric dust signal. An important one could be that
all 16 M-bands of VIIRS are used in the FFNN method, whereas only 3 M-bands are used
in the PHYS model.

(a) Day 075 13:36 True Color

(c) Day 075 13:36 Aerosol Optical Thickness (d) Day 075 13:36 Angstrom Exponent

(b) Day 075 13:36 Clear Sky Confidence

(e) Day 075 13:36 Off-Track FFNN
Cloud / Dust Free
Dust

Cloud
Missing Observation

0 20 40 60 80 100
Dust Percentage (%)

(f) Day 075 13:36 PHYS Model
Cloud / Dust Free
Dust

Cloud
Missing Observation

0 20 40 60 80 100
Dust Percentage (%)

Figure 11. A case study over Arabian peninsular on day 075, at 13:36. (a–d) depict images from
Wisconsin’s VIIRS quicklook, where (a) represents the true color, (b) Clear Sky confidence, (c) Aerosol
Optical Thickness, and (d) Angström Exponent; (e) FFNN results on the same geolocation. Results
are plotted in a 0.1× 0.1 latitude and longitude grid, and the percentage of dust within the grid
are shown as colors. Thin magenta lines show the CALIOP swath of this region. Pixels within the
magenta lines are the CALIOP product; (f) same as (e), but for PHYS product.
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6. Conclusions and Outlook

In this study, several ML based algorithms, namely, LR, KNN, RF, FFNN, and CNN,
are tested for detecting the occurrence of dust aerosols from daytime VIIRS satellite images.
These algorithms are trained based on one year (2014) of collocated state-of-the-art CALIOP
dust detection products. Based on different combinations of pixel and predictor variable
selections, four sets of input data are constructed for the training (i.e., 0D-AllVar, 0D-
SelectVar, 2D-AllVar, 2D-SelectVar). A validation based on the testing data shows that the
FFNN trained with the 2D-allVar input data is the best performing model, with a 84.99%
overall accuracy on the CALIOP track. The FFNN model was then tested for the entire
VIIRS granule, which covers more regions than CALIOP-VIIRS collocated track spatially.
Off-track FFNN dust distribution agrees reasonably well with collocated track FFNN dust
distribution, which indicates that there was no systematic bias between on and off track
model application. In addition, off-track dust distribution showed a similar distribution
with on-track CALIOP predictions, which warrants that the FFNN can be used to reproduce
CALIOP results outside the CALIOP track. Comparisons are also made between the FFNN
method with a physically-based dust detection algorithm both on and off the CALIOP
track. The FFNN method agrees better with the CALIOP than the PHYS model on the
CALIOP track, which is expected because FFNN is trained based on CALIOP observations.
When applied to all of the VIIRS granules, the FFNN detects significantly more dust than
the PHYS model. Case studies suggest that the difference may be coming from a number of
different factors, such as the different definitions of the dust event and the use of different
numbers of VIIRS observations in the two algorithms.

As far as we know, this is the first attempt to use an ML based algorithm trained
with the collocated CALIOP products for global dust detection from satellite images. The
results suggest that, even though the ML algorithms are only trained on the narrow track
of CALIOP, they can be applied to the whole VIIRS granule and retrieve statistically similar
dust frequency. This is very encouraging and meaningful for a couple of reasons. First of
all, this study, along with many recent ones (e.g., [34]), demonstrates the great potential
of ML methods for satellite based aerosol and cloud retrievals. Second, our study also
demonstrates that, even through the active sensors like CALIOP have an extremely small
spatial sampling rate, their observations and retrievals provide unique information on
aerosol that are highly useful for training the ML methods. However, a close collocation
between the active and passive sensors are needed, which is an important factor to be
considered in the planning of next-generation NASA satellite missions.

Despite the encouraging results, our study has several important limitations. First, the
abnormally high frequency of dust in the Antarctic and some remote ocean regions indicate
that our ML methods inherited some misidentification problems from the CALIOP retrieval.
The problems of the operational CALIOP aerosol retrievals are beyond the scope this study.
In future research, this issue could be alleviated by using additional constraints, such as the
AOD value, for dust detection when constructing the training data. Second, because we
excluded cloudy pixels from this study, our algorithms can only detect dust in cloud-free
conditions and require a reliable cloud masking algorithm to screen out the cloudy pixels
first. Theoretically, it is possible to train ML algorithms to identify both clouds and dust
at the same time if there can be enough high-quality training data. However, this would
be much more challenging and will be explored in future research. Third, our algorithms
can be used only during the daytime. In future research, the ML algorithms can be trained
only using the thermal infrared bands of VIIRS and as such they will be able to detect dust
during both the daytime and nighttime. Finally, the off-track results need to be further
evaluated in future research based on more reliable independent dust detection products,
for example, collocated ground-based AeroNET and/or lidar observations.

In this study, we have achieved our main objective, i.e., exploring the feasibility of
using the ML methods trained on the CALIOP track for off-track dust detection. The
results are very encouraging and also inspiring. Many questions are raised during this
study that warrant further investigations in the future. Here are a few examples. The
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RF method ranked three shortwave infrared bands and one thermal radiation bands as
the most important bands in terms of information content for dust detection. What are
the underlying physics for this ranking? The very similar results based on the 0-D and
2D input data structures seem to suggest that the adjacent pixels provide little additional
information for dust detection. Is this due to the nature of dust plume (i.e., a lack of spatial
structure) or a result of inadequate spatial window (i.e., larger or smaller than 5 × 5 pixels
for 2D)?
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