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ABSTRACT This study develops and compares three deep learning methods—LSTM, TCN, and N-
BEATS—for estimating near-surface air temperature (T2M) from satellite-derived land surface temperature
(LST) and land cover metrics such as NDVI and NDBI. By incorporating temporal context through varying
look-back windows, these models substantially outperform non-temporal baselines, reducing root-mean-
square error (RMSE) from around 2.6–2.8◦C to below 1.8◦C, and underscoring the value of historical
LST observations for capturing the evolving surface–air temperature relationship. Longer lags generally
improve accuracy, although N-BEATS performance plateaus beyond a certain window, reflecting both
diminishing returns and practical limitations linked to missing cloud-free satellite data. Seasonal and diurnal
evaluations show higher errors in spring and midday hours, likely due to rapid vegetation changes and
stronger physical and dynamical processes that make T2M less predictable. Spatially, stations with denser
vegetation exhibit elevated errors, suggesting that transpiration and canopy effects complicate the LST–T2M
linkage. For extreme-event detection, LSTM provides the fewest false alarms (highest precision), N-BEATS
captures the most extremes (highest recall), and TCN offers the best overall balance in precision and recall
(highest F1). While cloud-free satellite coverage remains a limitation, future work could explore adaptive
lag strategies, additional data sources, and more advanced data-fusion techniques. These results highlight
that satellite-based temperature monitoring, when combined with suitable deep learning architectures, can
reliably estimate T2M based on LST, further addressing gaps in near-surface observations and facilitating the
detection of critical T2M extremes. This framework has direct applications in heat-warning systems, resource
management, precision agriculture, and urban climate adaptation, and stands to benefit further from ongoing
advancements in satellite sensing technology.

INDEX TERMS Air temperature, atmosphere, climate informatics, deep learning, GOES-R, land-
atmosphere interaction, land surface temperature, landsat, LSTM, machine learning, N-BEATS, near surface
air temperature, remote sensing, statistical climatology, TCN.

I. INTRODUCTION
A major consequence of global warming is the increase in
near-surface air temperature, or 2-m air temperature (T2M),
often resulting in more frequent and intense temperature
extremes. These extremes can negatively affect human
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health [1], [2], [3], energy consumption [4], [5], [6],
agricultural productivity [7], [8], [9], and infrastructure [10],
[11], [12]. The spatiotemporal variability of T2M is further
complicated by the heterogeneity of land cover and other
environmental factors—such as vegetation, urbanization,
latitude, and time of day—that influence the land–atmosphere
energy balance [13], [14], [15], [16]. Despite the importance
of characterizing T2M across extensive spatial and temporal
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scales, continuous and comprehensive measurements of T2M
remain limited.

Several sources of T2M data exist, each with its own
benefits and drawbacks. Station-based measurements, for
example, offer local, high-quality records of temperature.
However, their utility often suffers from sparse spatial
coverage and issues related to station placement. In Illinois
(USA), only 63 meteorological stations serve an area of
approximately 150,000 km2, providing insufficient data
density to capture finer-scale temperature variations.

Reanalysis datasets can act as another major T2M source;
they integrate diverse observational inputs into numerical
weather prediction models and typically span large geo-
graphic regions (global) and extended periods [17], [18], [19].
However, reanalysis products can be prone to biases arising
frommodel assimilation processes. Moreover, their relatively
coarse resolution—on the order of 9 km for ERA-5—can
hinder detailed local analyses [20], even though combining
reanalysis data with regional climate or high-resolution
numerical weather prediction models can partially improve
spatial detail. These models, however, remain reliant on
reanalysis-derived boundary conditions, which can cause
underlying biases [21], [22], [23].

Finally, targeted observational campaigns—such as
vehicle-based measurements—can collect high-resolution,
localized T2M data. These campaigns are valuable for
capturing microclimatic variations, especially in urban
settings [24], [25], [26]. However, they tend to be limited
in both temporal span and spatial coverage, and they can
be logistically complex and resource-intensive—in both time
and cost—to maintain on a large scale.

In contrast, satellite retrievals of land surface temperature
(LST) are frequently available at finer resolutions and
broader coverage. For instance, the Geostationary Opera-
tional Environmental Satellites (GOES-R) series (GOES-16,
17, and 18) provides hourly LST data over North America
at roughly 2 km resolution [27], while instruments such as
Moderate Resolution Imaging Spectroradiometer (MODIS)
[28] or Ecosystem Spaceborne Thermal Radiometer Exper-
iment on Space Station (ECOSTRESS) [29] can collect
near-daily or finer-scale measurements. These observations
offer valuable insights into thermal conditions across diverse
landscapes.

Thus, estimating T2M from satellite-derived LST appears
attractive given the strong correlation between the two
temperature variables. However, accurately retrieving T2M
from LST remains challenging because LST and T2M
exhibit distinct physical and dynamical characteristics—such
as variations in the near-surface lapse rate [30], surface
energy balance [31], and atmospheric mixing [32] within
the boundary layer. Furthermore, vegetation strongly influ-
ences LST–T2M dynamics [33], [34], [35] by modulating
energy exchanges through evapotranspiration, altering the
partitioning of incoming radiation into latent and sensible
heat fluxes, and exhibiting relatively low albedo [36], [37],
[38]. These differences can introduce biases if not properly

accounted for, necessitating sophisticated modeling and
validation techniques.

Nevertheless, leveraging the widespread availability of
satellite-based LST data, multiple studies have proposed
various approaches to estimate T2M. One common strategy is
to develop physically based energy-balance models, in which
net incoming radiation (including anthropogenic heat flux,
where relevant) is partitioned into sensible and latent heat
fluxes at the surface [39], [40], [41]. Although this approach
offers a strong theoretical foundation, it is hindered by the
limited availability of key input variables from satellite data
alone (e.g., soil moisture, detailed vegetation parameters,
or meteorological forcing). Furthermore, advanced land
surface models can be computationally demanding when
applied at large spatial or temporal scales, restricting their
practicality for widespread operational use.

Another widely adopted approach involves statistical tech-
niques, including advanced machine learning and deep learn-
ing methods. For example, Support Vector Machines (SVMs)
are often chosen for their ability to handle high-dimensional
data and effectively model nonlinear relationships [42],
[43], [44]. Meanwhile, deep learning architectures—such
as Recurrent Neural Networks (RNNs) [45], [46], [47] or
Long Short-Term Memory (LSTM) networks [48], [49]—
can incorporate temporal dependencies, thereby capturing the
complex, time-varying dynamics that characterize T2M–LST
interactions. Moreover, these models can be enhanced by
integrating land cover information (e.g., NDVI or NDBI),
which helps account for the influence of vegetation and
urbanization on near-surface temperature patterns [50], [51],
[52], [53], [54], [55], [56]. Overall, these data-drivenmethods
offer strong predictive performance and flexibility, yet they
often lack the physical interpretability of process-based
models, which can limit their applicability in certain climate
and environmental analyses.

This study seeks to advance T2M estimation from
satellite-based remote sensing by introducing and rigorously
evaluating state-of-the-art deep learning methods specifically
designed for temporal analysis, with a focus on the Illinois
region in the United States. Although many previous studies
have employed ML and DL to estimate T2M from land
surface temperature data [48], [49], [57], [58], this work
differs in twoways. First, this study simultaneously compares
three modern sequence-based architectures—LSTM, TCN,
and N-BEATS—offering a broader exploration of how
distinct temporal DL approaches perform under the same
experimental setup. Second, I explicitly incorporate a suite
of land cover metrics (NDVI and NDBI) at multiple spatial
scales to capture vegetation and urbanization influences
on surface–atmosphere dynamics, thus addressing a critical
gap in existing studies that often overlook the impact of
heterogeneous land properties. By examining multiple model
architectures and systematically assessing their performance,
I aim to highlight both the potential and the limitations of
these methods for capturing variations in near-surface air
temperature.
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In particular, this study explores how model perfor-
mance varies across different station locations, addressing
the persistent challenge of sparse in-situ observational
networks. I also investigate the effects of incorporating
various temporal ‘‘look-back’’ windows to determine how
the volume and distribution of recent LST observations
shape the models’ ability to capture T2M–LST dynamics.
Through this comparative analysis, this study seeks to
identify best practices for tailoring deep learning frame-
works to diverse climates and land-use contexts, extending
beyond the capabilities of prior studies that focused on
either a single model architecture or a narrow range of
temporal inputs.

Beyond its methodological contributions, this work offers
practical insights that facilitate large-scale, rapid T2M
estimation using satellite-derived LST. Moreover, by clar-
ifying the conditions under which different lag windows
boost T2M predictions, we provide actionable insights for
optimizing data pipelines in applications such as urban
heat island mapping, agricultural monitoring, and climate
change assessments. By showcasing both the effectiveness
and scalability of these approaches, this study paves the
way for broader, more efficient T2M inference from satellite
observations.

II. DATA
A. LOCATION AND STATION MEASUREMENTS
Station measurements for this study come from the National
Centers for Environmental Information (NCEI) Land-Based
Station product, operated by the National Oceanic and
Atmospheric Administration (NOAA). In this study, I select
stations within the state of Illinois (IL), a major midlatitude
region in the United States. There are a total of 63 stations
available, from which I extract near-surface air temperature
(T2M) values. The frequency of the data varies, but for all
stations, measurements are taken at intervals of less than
10 minutes. I focus on warm season (March to October)
T2M data from 2019 to 2023 (5 years). The locations of the
NCEI stations used in this study, as well as general 10m-
land cover information [59], [60] for IL, are represented in
Fig. 1. Further details, including the location and dominant
land cover information for each station, can be found in
Appendix.

FIGURE 1. (a) Location of the study area (Illinois). (b) Major land cover in
Illinois and the location of each NCEI stations used in this study. The red
dots denote the location of the NCEI stations.

B. GOES-R LST ESTIMATES
In this study, I utilize land surface temperature (LST) mea-
surements from GOES-16, 17, and 18 satellites, collectively
referred to as GOES. These measurements have a spatial
resolution of 2 km and provide hourly data over the North
American region. For this analysis, I focus on the data for IL
during the warm season from 2019 to 2023, consistent with
the NCEI station measurements. One inherent limitation of
satellite-based products is their inability to measure surface
properties under cloudy conditions. Therefore, this study only
use cloud-free GOES pixels to ensure the reliability of the
LST product. As a result, the LST data in this study should
be considered cloud-free. Prior research has shown the error
margin of GOES LST to be under 2 K [27], [29].

C. LANDSAT-DERIVED LAND COVER METRICS
I also utilize high-resolution land cover metrics derived from
Landsat-8 Collection 2, Tier 2, Level 2 (hereafter, Landsat)
data. Landsat is equipped with 15m panchromatic and 30m
shortwave-infrared sensors, which enable the calculation
of various land cover metrics, namely the Normalized
Difference Vegetation Index (NDVI), and the Normalized
Difference Built-up Index (NDBI) at 30m resolution. These
metrics are selected for their relevance in analyzing veg-
etation (NDVI) and built-up areas (NDBI). The specific
equations for calculating each metric are provided below:

NDVI =
NIR− Red
NIR+ Red

(1)

NDBI =
SWIR− NIR
SWIR+ NIR

(2)

In Equations (1) and (2), NIR represents near-infrared
band (0.85-0.88µm wavelength), Red represents red band
(0.64-0.67µm), and SWIR represents shortwave-infrared
band (1.57-1.65µm). I considered other metrics, such as
the Enhanced Vegetation Index (EVI) and the Normalized
DifferenceWater Index (NDWI), but since they were strongly
correlated with NDVI and NDBI, respectively, they were not
included in the analysis.

Given that Landsat has a 16-day revisit interval, each
metric (NDVI and NDBI) is initially calculated for every
16-day period at a 30 m spatial resolution, covering the
entire Illinois region. To obtain daily values, spline smoothing
is then applied, a method widely used in previous studies
[61], [62], [63], [64] to generate fine temporal resolutions
from multi-day imagery. As a validation, I compared the
spline-interpolated daily dataset against daily MODIS NDVI
and NDBI at 500m resolution for 100 grid points in Illinois
(March–October 2023). The mean absolute error was 0.08 for
NDVI and 0.07 for NDBI, suggesting that this interpolation
approach reasonably preserves day-to-day variability (figure
not shown).

D. DATA INTEGRATION
As a final step, I co-located NCEI station data with the
GOES LST by performing a nearest-neighbor search in
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geographical space. Specifically, I calculated the great-circle
distance between each station (based on its latitude and
longitude) and everyGOES grid cell, then assigned the station
to the grid cell whose center was closest. After this spatial
matching, we temporally matched each hourly GOES LST
measurement to station T2M observations within a 30-minute
window. For example, if GOES LST was measured at 15:02,
I averaged all T2M readings from the corresponding station
between 14:47 and 15:17.

To understand the interaction between GOES-based LST,
land cover metrics, and station-specific metrics, I created
land property metrics for each station using Landsat data.
Specifically, for each NCEI station, I calculated the average
values NDVI and NDBI, within radii of 50m, 100m, and
200m to characterize the immediate surrounding environ-
ment. Additionally, I calculated the same metrics for the
broader 2 km × 2 km area around each GOES grid
point, representing larger-scale land cover influences, and to
quantify the effect of land cover related to GOES derived
LST. These station-specific land cover metrics have daily
resolution, which are smoothed form the 16-day raw NDVI
and NDBI product.

This multi-scale approach allows for the examination of
how land cover characteristics at different spatial scales inter-
act with surface temperatures observed by GOES LST and
those measured at station-specific locations. By comparing
station-specific metrics within smaller radii to broader met-
rics around the GOES grid, the study considers the extent to
which local land cover features influence temperature dynam-
ics at both fine and coarse spatial resolutions [24], [51], [65].

Fig. 2a illustrates the relationship between LST and T2M
across all stations during the warm season from 2019 to 2023,
capturing the relationship for all sampled data points. Fig. 2b
presents the correlation metrics between Landsat-derived
indices (NDVI and NDBI) at various spatial scales. The
results demonstrate that NDVI and NDBI at different scales
are positively correlated, while NDVI and NDBI exhibit an
inverse relationship.

FIGURE 2. a) Relationship between GOES LST and NCEI station T2M
during the warm season from 2019 to 2023, aggregated over all NCEI
stations. (b) Correlation matrix of Landsat metrics (NDVI and NDBI) at
different spatial scales.

III. METHOD OF ANALYSIS
A. GENERAL MODEL SETUP
The objective of the deep learning methods employed in
this study is to predict T2M at a given hour, t . To achieve

this, the model uses a set of predictor variables, including
GOES-based LST at a 2 km resolution surrounding the
weather stations, as well as NDVI and NDBI indices
calculated within radii of 50 m, 100 m, and 200 m around the
weather stations. Additionally, the average NDVI and NDBI
values over the 2 km GOES grid are included. To incorporate
diurnal and seasonal patterns, the model also utilizes the
month and hour of the day corresponding to hour t .

To leverage the temporal sequence capabilities of the
models, historical data is included in the input. Specifically,
for a given look-back window (lag) l, the model uses LST
values at t , t−1, . . . , t−l+1, enabling it to learn from patterns
and dependencies in prior observations. Different lags are
tested in this study, ranging from 2 to 18 hours with 2-hour
intervals (e.g., 2, 4, 6, . . . , 18). This approach ensures that the
model captures both the immediate and extended temporal
relationships between the predictor variable (LST) and the
target variable, T2M.

Since land cover information is included in the model,
I do not account for individual stations—meaning the models
are not developed separately for each station but are instead
designed as a universal framework capable of capturing the
T2M–LST relationship across varying land cover types and
temporal dynamics.

Using a 5-year dataset (2019–2023) covering the months
from March to October, I designate 2021 as the test set
and use 2019, 2020, 2022, and 2023 for training. This
study specifically chose 2021 because it falls in the middle
of the time span, creating an approximate 80%/20% split
between training and testing. This arrangement ensures that
the test set is temporally independent, providing a robust
evaluation of the model’s generalization capabilities. In total,
the training dataset contains 1,471,239 samples, while the
test set comprises 365,778 samples, offering sufficient data
to assess how well the model captures spatial and temporal
variability in T2M under diverse conditions.

B. LONG SHORT-TERM MEMORY (LSTM)
Long Short-Term Memory (LSTM) is a type of recurrent
neural network (RNN) designed to address the vanishing
gradient problem, which often limits the effectiveness of
traditional RNNs in learning temporal dependencies within
sequential data [66], [67], [68]. LSTM networks incorporate
memory cells and gating mechanisms—input, forget, and
output gates—that allow the network to retain, discard,
or update information as needed. These mechanisms make
LSTMs particularly effective in capturing both short-term and
long-term patterns, enabling them to excel in various time
series forecasting tasks.

In this study, I design a two-layer LSTM network that
receives (lag × 11) input sequences (GOES_LST, NDVI_50,
NDBI_50, NDVI_100, NDBI_100, NDVI_200, NDBI_200,
NDVI_GOES, and NDBI_GOES, plus two columns for
Month and Hour). The first LSTM layer takes these
11 features per time step and has 32 hidden units, using the
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sigmoid gates and tanh state updates. I apply a dropout rate of
0.2 to the output of this first LSTM. Next, the second LSTM
layer, also with dropout 0.2, reduces the hidden dimension
from 32 down to 16 hidden units. After processing the
entire sequence, I extract only the final time step’s output
(dimension 16) and feed it into a fully connected layer
(linear) of size 1, yielding a single scalar prediction (T2M).
No explicit activation function is used after the final linear
layer, allowing the output to remain in the real-valued range
for regression.

C. TEMPORAL CONVOLUTIONAL NETWORKS (TCN)
Temporal Convolutional Networks (TCNs) are a convolu-
tional architecture designed for sequential data, offering an
alternative to recurrent models such as LSTMs [69], [70],
[71]. TCNs use causal convolutions, ensuring that predictions
for a given time step are influenced only by past inputs,
and employ dilated convolutions to efficiently capture long-
range dependencies. Residual connections within TCN layers
improve gradient flow and model stability during training.
These features enable TCNs to model temporal patterns
effectively across varying time scales.

In this study, I design a two-block TCN to estimate
T2M with a same input setup as LSTM. The TCN itself
consists of two sequential blocks, each comprising two
causal one-dimensional convolution layers with padding and
a chomp operation to ensure that the output at any time
step depends only on past inputs. Within each block, ReLU
activations introduce nonlinearity, dropout (0.2) helps prevent
overfitting, and residual connections support deeper stacks
without vanishing gradients by merging the original input
with the convolutions’ output. The first TCN block receives
the raw input features and increases the channel dimension
to 32, while the second block processes these 32 channels
at a higher dilation rate, thus expanding the network’s
receptive field to capture broader temporal dependencies.
Finally, a linear layer then maps the output into a single
scalar value corresponding to the predicted T2M. This design,
featuring stacked causal convolutions, progressive dilations,
and residual pathways, allows the model to efficiently learn
multiscale temporal dependencies in the time series data.

D. NEURAL BASIS EXPANSION ANALYSIS FOR TIME
SERIES (N-BEATS)
Neural Basis Expansion Analysis for Time Series (N-
BEATS) is a state-of-the-art deep learning architecture
designed specifically for time series forecasting [72], [73],
[74]. N-BEATS uses a fully connected neural network
framework without reliance on domain-specific feature
engineering, making it highly flexible and adaptable to
diverse forecasting problems. The architecture is based on
a stack of blocks, each of which contains a set of fully
connected layers designed to decompose the input time series
into interpretable components, such as trend and seasonality.
These blocks operate in a forward and backward direction,

allowing the model to capture both historical context and
future patterns in the data.

In this study, I design a two-block N-BEATS model to
forecast T2M with identical input variables as LSTM and
TCN. Each time window, input data, is flattened into a single
vector before entering the first block. This block comprises
four fully connected layers (each followed by a ReLU
activation) that produce two outputs: a backcast, aiming to
reconstruct the input window, and a forecast, representing
a single-step prediction. The residual is then computed by
subtracting the backcast from the input vector and passed on
to the second block, which has the same four-layer structure.
The second block similarly outputs a backcast and a forecast;
the final model prediction is the sum of the two forecasts.
In this way, the two-block design captures a multi-stage
residual learning process in which each block refines the
forecast based on the partial reconstruction of prior inputs.
A RMSE loss drives the training, and dropout (0.2) is used
to mitigate overfitting. Once trained, the model produces a
single T2M estimate per sample by summing the forecasts
from both blocks.

E. EVALUATION METRIC
To compare the performance of the different methods, this
study uses several metrics—including root mean squared
error (RMSE), mean absolute error (MAE), R-squared
(R2), and slope—to assess overall accuracy. Additionally,
to evaluate how effectively the models capture extreme T2M
events, this study employs standard classification metrics
(precision, recall, and F1 score). Specifically, I first determine
the number of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN) for each model. This
study then compute precision, recall, and F1 based on the
following formulas:

Precision =
TP

TP+ FP
(3)

Recall =
TP

TP+ FN
(4)

F1 =
Precision× Recall
Precision+ Recall

(5)

These classification metrics enable a direct comparison of
each model’s ability to detect extreme cases.

IV. RESULTS
A. OVERALL PERFORMANCE
To evaluate the overall performance of each model (LSTM,
TCN, and N-BEATS) across different look-back periods
(lags, ranging from 2 to 18 hours at 2-hour intervals),
I analyze metrics including RMSE, MAE, R2, and slope
(1Model/1Station), as shown in Fig. 3. These metrics are
calculated using the 2021 data, which were not included in
the training of the models and were specifically reserved as a
test set. Overall, all threemodels performwell. Notably, when
compared to non-temporal models such as Support Vector
Machine (SVM), Random Forest (RF) and RNN, which are
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applied without temporal context (i.e., comparing LST and
T2M only at time t while considering land cover), incorpo-
rating temporal information leads to a significant reduction
in RMSE. Specifically, the RMSE for non-temporal SVM,
RF and RNNmodels was 2.84, 2.56 and 2.37◦C, respectively
(Figure not shown). In contrast, temporal models such as
TCN, N-BEATS, and LSTM demonstrate substantially lower
RMSE (below 1.8◦C, Fig. 3a), highlighting the importance of
leveraging temporal dependencies.

Among the temporal models, TCN and N-BEATS consis-
tently outperform LSTM across most metrics, with TCN and
N-BEATS showing comparable performance depending on
the metric being evaluated. This is probably because TCN
can effectively capturemulti-scale temporal dependencies via
dilated, causal convolutions and residual connections, which
often leads to more stable gradient propagation than standard
LSTM. Meanwhile, N-BEATS employs a basis expansion
strategy that better decomposes time series into trend-like
components, thereby enhancing its representation of T2M
patterns.

Model performance generally improves as the lag
increases, reflecting the benefit of incorporating more
temporal information. However, an exception is observed for
N-BEATS beyond a 10-hours lag, where the performance
starts to plateau or worsen slightly. This suggests that for
N-BEATS, incorporating additional temporal inputs beyond
this threshold may not yield further gains and could even
introduce noise or redundancy into the model.

Looking at the slope, one might notice a disturbance of
trendwith changing lags. A likely explanation is that the slope
metric is particularly sensitive to small changes in which data
points are included at each lag, especially when missing LST
observations alter the valid sample. Even subtle shifts in data
composition can make the slope fluctuate, even if RMSE and
MAE remain relatively stable.

The trade-off of using longer lags needs careful consid-
eration. While longer lags tend to improve model accuracy,
as evidenced by the decreasing RMSE andMAE and increas-
ing R2, they also require more extensive historical data.
For satellite-derived LST, such as from the GOES-R series,
obtaining continuous data for extended time periods (e.g.,
18 hours) can be challenging due to occasional disruptions
caused by cloud cover. Missing data in these scenarios
could adversely affect model performance, particularly for
methods like TCN and N-BEATS that rely on uninterrupted
temporal sequences. In that context, the N-BEATS model
with 10 hours of lag seems to be the most reasonable choice
in overall performance and consideration, by balancing
between the model performance and the lookback window.
But that could change based on data availability and one’s
priority.

B. SEASONAL AND DIURNAL CHARACTERISTICS
As a next step, this study examines how the model
performance changes with seasonality and the diurnal cycle.
In terms of seasonal RMSE, all three models display a

FIGURE 3. (a) RMSE calculated for each lag (x-axis) for different models
used in this study (LSTM, TCM, and N-BEATS). (b-d) same as (a), but for
MAE, R2, and slope values.

similar evolution: a peak in April and May, followed by
a notable minimum in July and August (Fig. 4a-c). This
indicates that the models generally become more accurate
during mid-summer, most likely due to a stable boundary
layer and a more consistent coupling between LST and T2M
at higher temperatures [75], [76], [77]. The presence of
higher NDVI in mid-summer, reflecting the growth of denser
vegetation, can further increase evapotranspiration and mod-
erate local temperature fluctuations, thus strengthening the
LST–T2M relationship. Another significant result is that the
best-performing lag is shorter in spring but becomes longer
in summer. In spring, abrupt temperature changes and rapid
vegetation transitions often make recent data more critical
for capturing T2M variability, whereas in summer, vegetation
has reached a more mature state, land surface conditions
shift more slowly, and built surfaces can accumulate heat
over longer times [78], [79], [80]. As a result, the model
benefits from drawing on a longermemorywindow to capture
these gradual changes in both vegetated and built-up areas (as
captured by NDVI and NDBI).

Examining the diurnal cycle (Fig. 4d-f), the RMSE is high-
est at noon, suggesting that the midday surge of heat fluxes,
stronger convection, and more vigorous boundary-layer
mixing reduce the accuracy of T2M predictions. During
these midday conditions, NDVI-related transpiration and the
urban heat storage reflected by NDBI can either dampen
or magnify the thermal contrast between surface and air,
making the LST–T2M linkage more volatile. The optimal
lag also becomes smaller during noon to afternoon, implying
that short-term data are especially critical when temperature
ramps up rapidly under intense solar heating. By contrast,
in the morning and overnight hours, temperature evolution
proceeds more steadily, allowing longer lags to remain
informative.

There appears to be a discrepancy regarding model
accuracy at higher temperatures: seasonally, performance
tends to improve as temperatures rise, whereas diurnally,

28940 VOLUME 13, 2025



J. Lee: Estimating Near-Surface Air Temperature From Satellite-Derived Land Surface Temperature

error increases during peak heat. On a seasonal scale, mature
vegetation and relatively stable boundary-layer conditions in
midsummer reinforce the coupling between LST and T2M,
which explains why higher temperatures can yield better
performance overall. In contrast, midday hours often involve
rapid heat fluxes, intense solar radiation, and enhanced
convection, leading to pronounced short-term variability
in T2M and thus higher RMSE at the daily temperature
peak. Essentially, strong coupling at broader seasonal scales
coexists with short-term diurnal fluctuations that reduce
accuracy during midday extremes.

FIGURE 4. (a) RMSE calculated for each month (x-axis) for different lags
(colored dots) for LSTM model. The color bar for the model lag can be
found in the right side of the plot. Blue dots represent the shorter lags
and the red represent the longer lags used in the model. The optimal lag
(lag with minimum RMSE) is shown on the bottom of each column of
scatterplot (b, c) same as (a), but for TCN and N-BEATS model. (d-f) same
as (a-c), but for the diurnal cycle (x-axis), sharing the same color bar.

C. SPATIAL CHARACTERISTICS
Themodel performance can vary due to not only the temporal
factors, but the spatial factors. In that context, this study also
examines how spatial characteristics—particularly vegetation
and built environments—affect model accuracy. I focus on
the N-BEATS model with a 10-hours lag window because it
achieves a good balance between predictive performance and
lookback length (see Fig. 3), and all models share broadly
similar spatial patterns of error. I plot the 10-hours lag
N-BEATSRMSE against station-level NDVI andNDBI at the
2 km scale in Fig. 5. Here, the RMSE is computed for each
NCEI station by comparing predicted and observed T2M,
and the station’s NDVI and NDBI values are taken as warm
season averages from 2021.

As shown, model performance deteriorates as NDVI
increases, and there is also a weaker negative trend with
NDBI. The stronger slope in NDVI implies that denser
vegetation tends to amplify the discrepancy between surface
(LST) and near-surface (T2M) thermal behavior, leading
the model to incur higher errors. One explanation is that
vegetation can enhance evaporative cooling and modulate
boundary-layer exchanges in a way that does not map
consistently onto LST changes. A canopy’s shading and
transpiration can decouple surface warming from the ambient
air temperature, making it more difficult for the model to
track T2M solely from LST-based features.

FIGURE 5. (a) Station-specific RMSE of the model performance versus the
NDVI (black dots), as well as its regression fit (red line). (b) Same as (a),
but for RMSE versus the NDBI.

D. EXTREME CASES
Another important consideration for T2M estimation is
how well the models can capture extreme temperatures.
In this analysis, I define an extreme case as any T2M value
exceeding the 95th percentile of all T2M measurements
recorded throughout the study period for all NCEI stations,
which corresponds to 29.4◦C.
This study then compare Precision, Recall, and F1 score

with 14-hour lagged models, because all three models
perform best during midday to early afternoon (Fig. 4d–f),
when T2M reaches its daily peak. Furthermore, changing the
lag window does not significantly alter the relative trends in
extreme detection.

As shown in Fig. 6, the highest precision is achieved
by the LSTM, while recall is highest with the N-BEATS,
and F1 is highest in the TCN. This indicates that LSTM is
most conservative (fewer false alarms), N-BEATS catches
the largest proportion of actual extremes, and TCN strikes
a balance between the two, leading to the strongest F1
performance.

FIGURE 6. (a) Precision of LSTM, TCN, and N-BEATS in extreme case
detection. (b, c) Same as (a), but for Recall and F1 Score.

V. SUMMARY AND DISCUSSION
A. SUMMARY
In this study, I utilized and compared three temporal
deep learning methods—LSTM, TCN, and N-BEATS—for
estimating T2M from satellite-derived LST and land cover
metrics such as NDVI and NDBI. By incorporating temporal
context through various look-back windows (lags), these
models substantially outperformed non-temporal approaches
like support vector machine, random forests and simpler
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neural networks. This underscores the critical role that
historical LST play in capturing the evolving relationship
between surface and near-surface temperatures.

Evaluating the three methods revealed several key insights.
First, the models generally benefited from longer lags,
as more historical data improved accuracy. However, N-
BEATS performance plateaued at around 10 hours of lag,
suggesting diminishing returns beyond this threshold. Since
these models rely on cloud-free satellite data, pushing to
18-hour lags or more can encounter practical issues where
missing LST observations break the temporal continuity.
Consequently, while a longer memory window can theoret-
ically capture extended dynamics, N-BEATS with a 10-hours
lag offers a balanced solution that is more robust against gaps
in satellite measurements.

Seasonally and diurnally, all models showed higher RMSE
in spring (April–May) and lower RMSE in mid-summer
(July–August). The abrupt vegetation transitions in spring
likely reduce predictability, whereas mature vegetation and
relatively stable conditions in summer support stronger T2M–
LST coupling. A similar pattern emerged in the diurnal
cycle, where the highest midday (12–18 hours) temperatures
introduced more error in T2M, suggesting that heat fluxes,
convection, and boundary-layer mixing reduce the accuracy
of T2M predictions. Interestingly, a shorter optimal lag tends
to align with higher RMSE, implying that these rapid changes
are inherently harder to predict.

Spatially, all models exhibited a trend of increasing RMSE
with higher NDVI values at station locations, highlighting
how denser vegetation modifies surface–air temperature
relationships (for instance, through enhanced evapotranspira-
tion). In detecting extreme T2M events, LSTM achieved the
highest precision (fewest false alarms), N-BEATS achieved
the highest recall (capturing the truest extremes), and
TCN provided the best balance overall (highest F1). This
variability in extreme detection suggests that model choice
could be tailored to particular operational needs: for example,
N-BEATS with a 10-hours lag for general T2M forecasting,
but TCN for more balanced extreme-event monitoring.

B. DISCUSSIONS
These findings carry significant implications for near-surface
air temperature (T2M) monitoring, particularly in appli-
cations that require frequent and fine-scale temperature
forecasts. By leveraging satellite-derived LST alongside
multi-scale NDVI and NDBI, the deep learning models
evaluated here—LSTM, TCN, and N-BEATS—demonstrate
a marked improvement in capturing diurnal and sea-
sonal T2M variability. This level of accuracy supports
more targeted resource allocation in sectors such as pub-
lic health, where early heat-wave detection can mitigate
risks [1], [2], [3], and agriculture, where timely temperature
information can inform irrigation and crop management
decisions [7], [9].

Compared with similar studies that commonly employed
either traditional machine learning algorithms or

single-architecture deep learning approaches under shorter
or fixed lag times [46], [56], this work offers a side-by-side
examination of three advanced temporal methods applied
over varying lag windows. Such a comparative framework
highlights both the shared and distinct mechanisms by which
these models learn dependencies between historical LST
observations and current T2M, providing novel insight into
how different architectures cope with missing data and
complex land cover influences. In particular, the multi-scale
design for NDVI and NDBI used here moves beyond the
narrower focus on a single vegetation or urban index,
shedding light on localized variations in vegetation structure
and built surfaces that more strongly modulate T2M than
previously recognized [42].

An immediate advantage of these temporal deep learning
architectures is their flexibility in incorporating additional
features—such as lagged meteorological variables or other
satellite products—without major restructuring of the model.
This opens the door to operational applications, where new
data streams can be seamlessly integrated to refine forecasts.
Nonetheless, disadvantages do surface in practice. Models
like TCN and N-BEATS often require extensive training
data, and maintaining continuity in LST observations can
be challenging when cloud cover disrupts measurements
over extended windows. The computational cost may also
rise rapidly as the input sequence lengthens or the spatial
coverage expands, potentially limiting real-time deployment
in resource-constrained settings.

Certain limitations further constrain how well these
approaches capture local land–atmosphere interactions.
While NDVI and NDBI provide valuable information on
vegetation and built-up areas, they do not encompass
other critical factors such as soil moisture, detailed canopy
structures, or fine-scale topography. If any of these miss-
ing variables heavily influence T2M in specific regions,
model performance may suffer. Moreover, relying on sparse
station-based observations as ground-truth can introduce
biases where local microclimates deviate from regional
conditions. Lastly, incorporating additional variables and
more extensive ground observations could yield a more
comprehensive framework for T2M estimation.

Looking ahead, future directions include integrating phys-
ical model outputs or reanalysis datasets to fill in gaps
during cloudy conditions, employing adaptive lag strategies
that shorten or lengthen historical windows based on data
continuity or known meteorological regimes, and expanding
the land-surface descriptors to encompass soil moisture, fine-
scale urban morphology, or high-resolution canopy structure.
These enhancements could help themodels better disentangle
rapidly changing processes—such as evapotranspiration in
newly leafed vegetation or the heat storage dynamics in
densely built areas—and thus more reliably detect extreme
events. As satellite sensing technology moves toward higher
spatial and temporal resolution, and as ground-based sensor
networks expand, the combined use of multi-source data
with robust temporal learning frameworks stands to further
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advance climate monitoring, urban heat adaptation efforts,
and sustainable resource management at multiple scales.

APPENDIX STATION INFORMATIONS

TABLE 1. Location and land cover information of the NCEI stations.
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