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ABSTRACT This study develops a conditional Generative Adversarial Network with a multi-head Critic
(cGAN_ext), under a Wasserstein GAN with gradient penalty (WGAN-GP) framework, to downscale
coarse-resolutionmeteorological data into high-resolution precipitation fields. Themodel’s U-Net Generator
combines large-scale atmospheric inputs—2 m temperature, total column water vapor, mean sea-level pres-
sure, and downsampled precipitation—with a noise tensor, while the Critic enforces adversarial constraints
and explicitly classifies extreme events. By focusing on rare high-intensity rainfall within the adversarial
training loop, cGAN_ext captures crucial tail behavior that can be overlooked by conventional approaches.
Experimental results reveal that cGAN_ext not only preserves fine-grained spatial details but also better
represents heavy precipitation episodes, thereby improving essential metrics such as mean squared error,
fractions skill scores for extremes, and temporal correlation. Visual analysis further confirms the model’s
ability to reproduce sharp precipitation fronts and narrow bands, underscoring the benefits of integrating
an extreme-classification objective into a WGAN-GP cGAN pipeline. This enhanced downscaling method
offers more accurate and coherent high-resolution precipitation maps, supporting informed decision-making
in agricultural planning and water resource management.

INDEX TERMS Precipitation, radar, multi-radar multi-sensor, generative adversarial network (GAN),
conditional GAN, Wasserstein GAN, deep learning, machine learning, ERA-5, downscaling, climate
informatics.

I. INTRODUCTION
The frequency and intensity of extreme precipitation events
are significant in multiple sectors of the society, including
agriculture, infrastructure, and human health [1], [2], [3], [4].
Moreover, extreme precipitation is a key driver of natural
disasters, including landslides, hailstorms, and flooding.

One of the most severely impacted sectors due to shifting
precipitation patterns—whether through extreme rainfall or
prolonged drought—is agriculture [5], [6], [7], [8]. Changes
in precipitation not only threaten crop yields but also disrupt
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planting and harvesting cycles, degrade soil quality, and strain
water resources [9], [10], [11]. These challenges have cas-
cading effects on food security, rural livelihoods, and global
supply chains, underscoring the critical need for adaptive
strategies to ensure agricultural resilience in the face of cli-
mate change.

A key characteristic of precipitation is its tendency to occur
over short durations and within localized areas. Despite its
constrained spatial and temporal scope, such events can have
far-reaching impacts due to the high variability of precipita-
tion patterns. In regionswhere extreme rainfall alternateswith
periods of drought, the unpredictability of water availability
exacerbates agricultural challenges. Farmers often bear the
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burden of investing in water management infrastructure, such
as drainage systems and flood barriers, to mitigate these
risks [12], [13], [14], [15].

Given the sector’s vulnerability, it is critical for climate
models to accurately project and detect precipitation events
to enable better risk mitigation and enhance preparedness.
However, current climate models have notable limitations,
particularly in terms of spatial and temporal resolution. For
instance, widely used global climate models (GCMs) such
as Community Earth System Model (CESM-2) [16], Max
Planck Institute Grand Ensemble (MPI-GE) [17], or Cana-
dian Earth System Model (CanESM) [18] typically have grid
spacings of 30 to 80 km and temporal resolutions ranging
from 1 to 24 hours. These scales are too coarse to accurately
assess precipitation events, which often occur at finer spatial
and temporal scales.

To address these limitations, efforts have been made to
enhance the spatiotemporal resolution of climate model
outputs using downscaling methods. These approaches gen-
erally fall into two main categories: dynamical downscaling
and statistical downscaling. Dynamical downscaling employs
high-resolution regional climate models (RCMs), such as the
Weather Research and Forecasting (WRF) model, to sim-
ulate a smaller domain nested within a GCM. Dynamical
downscaling has the advantage of preserving the physical
consistency of weather variables, as it is based on the under-
lying physics of the atmosphere and interactions with land
and ocean surfaces. However, it is computationally intensive,
particularly when applied to large domains or when higher
spatial and temporal resolutions are required.

In contrast, statistical downscaling relies on empirical
relationships between large-scale climate variables from
GCMs and local-scale climate observations. This approach
is computationally efficient and capable of producing
high-resolution outputs over extensive areas [19], [20], [21],
[22]. However, its accuracy is heavily dependent on the
availability and quality of observational data, as well as the
robustness of the statistical relationships developed. Con-
ventional statistical downscaling methods for precipitation
include techniques such as multivariate analysis, mean-based
methods, distribution-based methods, and machine-learning-
based approaches.

Multivariate analysis considers multiple climate variables
simultaneously to establish relationships between large-scale
predictors and local precipitation, often using methods like
principal component analysis (PCA) or canonical correlation
analysis (CCA) to identify patterns and reduce dimension-
ality [23], [24]. Mean-based methods focus on adjusting
large-scale climate outputs to match observed local means,
typically using bias correction techniques, though they may
struggle to accurately represent extremes or variability [25],
[26]. Distribution-based methods model the statistical dis-
tribution of precipitation and adjust GCM outputs to better
align with observed distributions, offering a more robust
approach for capturing variability and extremes [27], [28].

Machine-learning-based methods, such as support vector
machines (SVM) and random forests (RF), provide a modern
alternative by capturing complex nonlinear relationships and
interactions among predictors These methods have shown
promise for precipitation modeling [19], [29], [30], [31].

More recently, neural network models, particularly deep
learning approaches, have gained significant attention for
their potential in downscaling precipitation data. Convolu-
tional Neural Networks (CNNs) [32], [33], [34] and Long
Short-Term Memory (LSTM) [35], [36] networks have
demonstrated their ability to effectively capture the complex
spatial and temporal characteristics of precipitation events.
These models, however, are generally considered more basic
forms of neural networks within the broader spectrum of deep
learning techniques.

For more advanced techniques, Generative Adversarial
Networks (GANs) have been gaining attention as a promis-
ing method for climate and weather downscaling [37],
[38]. GANs operate through a generator-discriminator frame-
work, where the generator creates high-resolution data from
low-resolution inputs, and the discriminator evaluates the
accuracy of the generated data against actual observations.
This adversarial training process allows GANs to produce
realistic, high-resolution precipitation data that effectively
captures both the mean state and extremes, which are often
challenging for traditional methods. One of the key strengths
of GANs lies in their ability to learn complex, nonlinear
relationships in the data without requiring explicit statistical
assumptions. This makes them particularly suited for tasks
like precipitation downscaling, where the spatial and tempo-
ral variability of rainfall can be highly complex. GANs have
been shown to outperform conventional downscaling meth-
ods in capturing localized extreme events, such as intense
rainfall or drought clusters.

Beyond basic GAN architectures, advanced variations such
as Conditional GANs (cGANs) have been developed to
incorporate auxiliary information, such as specific climate
variables or spatial constraints, to further improve the fidelity
of downscaled outputs [39], [40], [41]. These conditional
approaches allow the models to generate precipitation pat-
terns that are not only realistic but also physically consistent
with the underlying atmospheric conditions.

The downside of traditional GAN methods is that they
often suffer from mode collapse and training instability [42],
[43], which can lead to poor diversity in generated sam-
ples and a lack of robustness in their outputs. To address
these challenges, Wasserstein GAN based Gradient Penalty
(WGAN-GP) approach have been employed [44], [45]. The
WGAN-GP improves training stability by providing a more
reliable measure of distance between the generated and real
distributions, thereby mitigating mode collapse and ensuring
better convergence. Furthermore, capturing extreme events is
crucial in any precipitation downscaling approach. To address
this, we explicitly equip our model with the capability to
detect and better represent high-intensity rainfall, thereby
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enhancing its performance on rare yet impactful precipitation
extremes.

In this study, we aim to develop a WGAN-GP based
cGAN model with extreme-detecting ability to downscale
climate model-based reanalysis data to high spatial and tem-
poral resolution, with a specific focus on the Corn Belt
region of Illinois, USA. This region is highly sensitive to
precipitation variability due to its reliance on agriculture,
particularly corn and soybean production, which are vulner-
able to both extreme rainfall and drought. By incorporating
auxiliary information, such as temperature or sea level pres-
sure patterns, into the cGAN framework, we aim to improve
the resolution and detail of precipitation outputs while
maintaining consistency with observed data patterns in the
region.

The outcomes of this study are expected to provide
useful tools for stakeholders in agriculture and water
resource management. By generating high-resolution pre-
cipitation datasets, the WGAN-GP based cGAN model
with extreme-detection ability will support better-informed
decision-making, such as improving crop yield projections,
optimizing water resource planning, and offering data-driven
support for agricultural risk management strategies. This
research contributes to the growing field of statistical cli-
mate downscaling by exploring the application of cGANs
to enhance the precision of regional climate data and
address challenges associated with coarse-resolution climate
models.

II. DATA
A. STUDY REGION
Figure 1 illustrates the focus area of this study. The study
centers on a region in Illinois, widely recognized as part of the
Corn Belt due to its significant agricultural activity. The exact
study area is highlighted in Figure 1b with a red box, covering
approximately 150km × 150km. This region was selected
for its agricultural importance, making it an ideal location
for testing the proposed downscaling methods. Furthermore,
the topography in this region is mostly flat, which minimizes
the influence of complex terrain on precipitation patterns,
allowing for a clearer evaluation of the model’s performance
in capturing localized precipitation dynamics.

FIGURE 1. (a) Location of the study area (Illinois). (b) Major land cover in
Illinois and the location of each NCEI stations used in this study.

B. MRMS PRECIPITATION DATA
The Multi-Radar/Multi-Sensor (MRMS) system [46] pro-
vides high-resolution precipitation data with exceptional
spatial (1 km) and temporal (2 minutes) resolution. By inte-
grating radar networks, surface and upper-air observations,
lightning detection systems, satellite imagery, and forecast
models, MRMS offers comprehensive and robust precipi-
tation estimates across North America. Studies confirm its
reliability in capturing spatial and temporal rainfall dynam-
ics when validated against ground-based measurements and
single radar systems [46], [47], [48], [49].

MRMS data serves as the high-resolution benchmark
for this study’s downscaling model. Its ability to resolve
fine-scale rainfall features is critical for evaluating the per-
formance of the cGAN model in reproducing localized
extreme events, such as flash flooding and intense convec-
tive rainfall. These features are often underrepresented in
coarse-resolution datasets like ERA-5.

WhileMRMS provides extensive spatial and temporal cov-
erage, it has known limitations. Challenges include capturing
precipitation in complex terrains where radar beam blockage
or overshooting may occur and underestimating near-surface
precipitation. These limitations are primarily observed in
mountainous or densely urbanized regions [48], [49]. How-
ever, these concerns are minimal in the predominantly flat
study region, where MRMS data is well-suited to capture
precipitation dynamics accurately.

To align with the spatial resolution of ERA-5 (0.25◦),
MRMS data was systematically downsampled, creating a
precipitation rate (PR) dataset. This PR dataset serves
as a proxy for low-resolution climate model outputs
while retaining sufficient detail for evaluating downscal-
ing accuracy. The analysis period spans the wettest months
(June–August) from 2018 to 2023, capturing high-impact
precipitation events critical for agriculture in the study
region.

By leveraging MRMS data, the proposed model not only
achieves high spatial and temporal fidelity but also supports
better-informed water resource planning and agricultural risk
management. Previous studies [39], [50] demonstrate the
efficacy of using MRMS-derived data in precipitation down-
scaling, reinforcing its pivotal role in this research.

C. ERA-5 REANALYSIS DATA
The lower-resolution dataset used in this study is the ERA-
5 reanalysis dataset, which features a spatial resolution of
0.25◦

× 0.25◦ (consistent with PR data) and an hourly tem-
poral resolution. Reanalysis data is produced by assimilating
observations from various sources, such as satellites, weather
stations, and radiosondes, into a numerical weather prediction
(NWP) model to create a consistent, gridded dataset that
represents past atmospheric conditions. This process blends
observations with the physical principles encoded in the
model, allowing for global coverage and the generation of
variables that may not be directly observed.
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Reanalysis datasets, such as ERA-5, are often used as
proxies GCMs because they provide comprehensive and
continuous data that reflect both observed andmodeled atmo-
spheric dynamics. While not explicitly a GCM, ERA-5’s
integration of observational data and model outputs enables
it to act as a surrogate for GCMs, especially when studying
historical climate conditions. Its lower resolution aligns well
with that of many GCMs, making it a suitable candidate for
use in downscaling applications that aim to bridge the gap
between coarse climatemodel outputs and finer observational
datasets.

In this study, we use 2-meter air temperature (T2M), total
column water vapor (TCWV), and mean sea level pressure
(MSL) as the coarse-resolution input variables. These vari-
ables were chosen based on their established relevance in
prior downscaling studies [51], [52]. While incorporating
additional variables, such as those at different pressure levels
(e.g., 850 hPa), could improve model performance, we limit
our selection to these three variables to balance accuracy with
computational efficiency. To ensure temporal alignment with
the PR data derived from MRMS, we interpolate the ERA-
5 variables to a 20-minute resolution. Spatially, no further
adjustments are needed, as the PR data, being a downsampled
product, is designed to align with the spatial resolution of the
ERA-5 dataset.

An example of the dataset used in this study is illus-
trated in Figure 2, where we present the MRMS, PR, T2M,
TCWV, and MSL data for June 4, 2020, at 05:40. This
figure highlights the differences in resolution between the
input data and the desired output (downscaled) data, pro-
viding a clear depiction of the downscaling process and its
objectives.

FIGURE 2. (a) MRMS precipitation pattern for the June 4, 2020, at 05:40.
(b) Same as (a), but for downsampled MRMS (PR). (c-e) Same as (a), but
for ERA-5 2m temperature (T2M), total column water vapor (TCWV), and
mean sea level pressure (MSL), respectively.

D. MODEL SETUP
In this study, we aim to develop a regression model that
takes PR and ERA-5-based variables—PR, T2M, TCWV
and MSL—as inputs and produces MRMS as output. This
approach can be viewed as enhancing the coarse-resolution
dataset to match the higher-resolution precipitation data pro-
vided byMRMS. For training and testing, we temporally split
the dataset. The five years of data from 2018 to 2022 are
used as the training set, while data from 2023 is reserved for
testing. The training set consists of a total of 33,120 timesteps
(5 years × 92 days × 24 hours × 3 timesteps per hour),
each represented as a 150 × 150 grid image. The testing
set, with data from 2023, includes 6,624 timesteps with the
same spatial resolution. This temporal split ensures that the
model is evaluated on entirely unseen data, enabling a robust
assessment of its generalization capabilities.

III. METHOD OF ANALYSIS
A. WGAN-GP-BASED CGAN WITH EXTREME CRITIC
1) GENERATIVE ADVERSARIAL NETWORKS (GANS)
A Generative Adversarial Network (GAN) [53], [54] are a
class of deep learning models designed to learn data dis-
tributions by placing two networks in opposition. One of
these networks is the Generator (G), which maps a random
noise vector z to synthetic data x̂. The other network is the
Discriminator (D), or Critic in certain variants, which receives
either real data x from the training set or generated data x̂
from the Generator, then outputs a measure of how ‘‘real’’ or
‘‘fake’’ it believes each sample to be.

This setup is designed to include an adversarial training
process, often described as a min-max game. In its classical
form, the Generator attempts to minimize the Discriminator’s
ability to distinguish real from fake, whereas the Discrimina-
tor tries to maximize that same ability. Let Pdata denote the
real data distribution and let Pz denote the noise distribution
from which z is drawn. The original GAN objective can be
written (in simplified notation) as:

min
G

max
D

(Ex∼pdata
[
logD (x)

]
+ Ez∼pz

[
log (1 − D (G (z))

]
)

(1)

Here, x ∼ pdata represent the real data distribution
(e.g., MRMS) and z ∼ pz is a noise distribution. The term
Ex∼pdata

[
logD (x)

]
represents the expected log-probability

that the Discriminator assigns to correctly identifying the real
data, while Ez∼pz

[
log (1 − D (G (z))

]
measures the expected

log-probability that the Discriminator correctly identifies the
generated outputs G (z) as fake.

2) CONDITIONAL GANS (CGAN)
A standard GAN only learns to map from noise z to synthetic
data, ignoring any external context that might shape the distri-
bution.Many real-world tasks, especially inmeteorology, this
process can involve strong dependencies on known variables.
A conditional GAN (cGAN) incorporates additional inputs,
referred to as the condition (xcond ) In this study, these inputs
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include large-scale fields, including PR, T2M, TCWV, and
MSL.

By feeding both z and xcond into the Generator, the
model learns to produce synthetic precipitation x̂, that is
consistent with the given atmospheric drivers. Simultane-
ously, the Discriminator (or Critic) also sees the same
condition xcond concatenated with either real or generated
precipitation, thereby enforcing coherence between the two.
This setup ensures that outputs from the Generator respect
the large-scale physical states on which local precipitation
depends.

3) WASSERSTEIN GAN WITH GRADIENT PENALTY
(WGAN-GP)
Although cGANs guide the model to respect external condi-
tions, classical GAN training can be unstable and prone to
mode collapse, where the Generator produces only a narrow
subset of possible precipitation patterns. Wasserstein GAN
(WGAN) addresses these issues by adopting the Wasserstein
distance (also called Earth Mover’s distance) as a measure of
divergence between real and generated distributions. Instead
of classifying samples as real or fake, the Discriminator
becomes a Critic that outputs a real number for each sample,
indicating its ‘‘realness.’’

The WGAN-GP variant ensures that the Critic remains
a Lipschitz function through a gradient penalty. The term
‘‘Lipschitz’’ means that the Critic’s output cannot change
arbitrarily fast with respect to small changes in input, which
stabilizes the training. To achieve this, WGAN-GP adds a
penalty term to the Critic’s objective that discourages large
gradients. The Critic’s full objective can be represented in
simplified form as:

LCritic_WGAN =
(
E

[
D

(
xfake

)]
− E [D (xreal)]

)
+ λEx̂

[∥∥∇x̂D
(
x̂
)∥∥

2 − 1
]2 (2)

In this equation, xfake and xreal each denote the generated
(fake) and existing (real) input data. The expression ∇x̂D

(
x̂
)

denote the gradient of the critic D, with respect to x̂. The
notation

∥∥∇x̂D
(
x̂
)∥∥

2 represents the L2 norm of the gradient,
and this is further scaled by the factor λ. For the Generator in
the WGAN-GP, the objective becomes:

LGenerator_WGAN = −E
[
D

(
xfake

)]
(3)

This means that the Generator tries to maximize the Critic’s
score on the fake samples it produces. This process naturally
leads the Generator to generate outputs that the Critic per-
ceives as more ‘‘real,’’ typically yielding more stable training
than classical GANs.

4) MULTI-HEAD CRITIC FOR EXTREME PRECIPITATION
In precipitation downscaling, capturing the rare but impactful
high-intensity events (≥ 20mm/hr precipitation, equivalent to
95th percentile) is crucial. Simply relying on a single scalar
Critic output can lead to underrepresentation of these heavy

tails, because the adversarial training often prioritizes match-
ing the overall distribution rather than these rare extremes.
By augmenting the Critic with an extreme classifier head, the
model can focus on distinguishing extreme events directly,
rather than hoping the generator captures these high values
incidentally. Furthermore, model can provide gradient signals
specific to rare but physically important samples.

To address this, we first label each scene of precipitation
of extreme/non-extreme as if it contains at least one pixel of
20mm/hr precipitation. Based on this, we introduce another
critic loss function called the Extreme Classification Loss
function, inspired by the cross-entropy function. Mathemati-
cally, it can be expressed as:

LExtreme

= −
1
m

m∑
i=1

× [yi log (σ (Dc (xi))) + (1 − yi log (1 − σ (Dc (xi)))]

(4)

where Dc (xi) is the Critic’s classification head output for
sample i, and σ () is the sigmoid function so the classifica-
tion logit Dc (xi) fit into the probability distribution between
0 and 1. Combining this with the LCritic_WGAN , the total Loss
function becomes:

L = LCritic_WGAN + αLExtreme (5)

where α is a weighting factor. We have tested multiple α for
this model, and α = 0.1 was selected for the best performing
model. By integrating this multi-head Critic into a WGAN-
GP framework, our model explicitly focuses on both overall
distribution alignment and the correct generation of extreme
events—leading to more robust downscaling performance,
especially in the upper tail of the precipitation distribution.

5) MODEL ARCHITECTURE
In this study, we use a conditional WGAN-GP design
to transform coarse-resolution meteorological fields into
fine-resolution precipitation maps (150×150). The generator
follows a U-Net architecture, where four meteorological vari-
ables are concatenated along with a two-dimensional noise
tensor (latent_dim = 2) across the channel dimension. This
U-Net has five downsampling stages, each applying a pair
of convolution and ReLU operations plus a max-pooling
layer, resulting in progressively smaller spatial dimensions
but richer feature channels (up to 1024 in the final downsam-
pling). We then double this to 2048 channels in a bottleneck
layer to capture broad-scale atmospheric context. On the
upsampling side, a series of transposed convolutions restore
the resolution step by step, and skip connections reinte-
grate feature maps from earlier layers to preserve small-scale
precipitation details. Before returning the final precipitation
field, an interpolation stage resizes the output to 150 × 150,
ensuring spatial consistency.
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The critic is designed as a multi-head network, taking five
total channels—four meteorological fields plus one precip-
itation channel—and producing two logits to classify each
sample as extreme or non-extreme, based on whether its max-
imum precipitation exceeds a threshold (extreme_threshold
= 20.0). Real samples derive their label from the observed
precipitation, while generated samples inherit the real sam-
ple’s label. In addition to this classification head, the critic
enforces the WGAN-GP objective by measuring how ‘‘real’’
or ‘‘fake’’ each precipitation field appears, stabilized via
gradient penalties to maintain Lipschitz continuity and avoid
training instabilities like mode collapse.

We train the network for epochs = 200, using batches
of size batch_size = 128. We apply the Adam optimizer at
learning_rate = 1e-4 and enable an early-stopping mech-
anism with patience = 25 epochs based on a validation
mean squared error (MSE) criterion. Each epoch proceeds
with the critic update first: we generate a batch of synthetic
precipitation using a detached generator output—so it does
not propagate gradients back to the generator—and compute
a binary cross-entropy loss on the critic’s extreme classi-
fication head. We also maintain the WGAN-GP aspect by
having the critic differentiate between real and fake inputs.
Next, we perform a fresh pass of the generator to update its
parameters with a combined loss that includes an MSE term
(comparing generated and real precipitation) plus an extreme
classification penalty weighted by alpha_class_loss = 0.1.
This separate classification term encourages the generator to
produce rare high-intensity rainfall when conditions warrant
it. If the validationMSE improves, we save the best generator
parameters.

At inference time, we load the trained models, concatenate
new coarse-scale fields with a random noise tensor and pass
this through the generator to obtain high-resolution precip-
itation predictions. Because each sample retains the same
resolution (150 × 150) as the training outputs, operational
or climate analysts can directly evaluate these forecasts in
downstream applications. Overall, this integrated setup—
pairing a U-Net generator with a multi-head WGAN-GP
critic—balances spatial accuracy, temporal realism, and
explicit focus on extreme precipitation events, addressing a
key shortcoming in conventional deep learning downscaling
approaches. The schematic of the model structure can be
found in Figure 3.

B. EFFICIENT SUB-PIXEL CONVOLUTIONAL NETWORK
(ESPCN)
As a baseline model for comparison, we adopt the Effi-
cient Sub-Pixel Convolutional Network (ESPCN) [55], [56],
[57] which directly learns to rearrange low-resolution fea-
ture maps into high-resolution outputs through a sub-pixel
(pixel-shuffle) operation. Unlike classical upsampling meth-
ods (e.g., bilinear interpolation or standard deconvolution),
ESPCN simultaneously exploits learned convolutions and
sub-pixel rearrangement to preserve fine-grained details.

FIGURE 3. Simplified schematic of cGAN_ext architecture used in this
study.

The network first applies a series of convolutional layers
to the coarse-scale meteorological inputs, extracting richer
features at the native low resolution. Each convolution is
followed by a ReLU activation. Subsequently, the sub-pixel
convolution step (Pixel Shuffle) expands the spatial resolu-
tion. Specifically, the final convolution layer produces r2 ×

Cout channels, where r is the scale factor (set to 2 in our
experiments) and Cout = 1 for the precipitation output chan-
nel. This output is then reshaped by Pixel Shuffle into a
(Cout , rH , rW ) tensor, effectively super-resolving the precip-
itation field from low to high resolution.

In our configuration, we use three convolutional layers:
a 5 × 5 filter in the first layer, followed by a 3 × 3 fil-
ter, and ending with the sub-pixel convolution layer that
outputs r2 = 4 channels. We train the model with a
pixel-wise MSE loss and the Adam optimizer. During train-
ing, batches of coarse-scale meteorological inputs are fed
into ESPCN, whose outputs are directly compared against
the target high-resolution precipitation. Once trained, the net-
work can be applied to any new coarse-scale input to generate
high-resolution precipitation predictions in real time.

C. EVALUATION METRICS
1) GENERAL METRIC
Herewe introduce some evaluationmetrics that can be used to
compare the performance of cGAN_ext, cGAN and ESPCN.
First, we use a Kling-Gupta Efficiency (KGE) for general
performance evaluation. KGE is defined as:

KGE = 1 −

√
(r − 1)2 +

(
σmodel

σmrms

)2

+

(
µmodel

µmrms

)2

(6)

where r is the Pearson correlation coefficient between
MRMS and the model, while σ and µ each represents the
standard deviation and mean of the dataset. A perfect predic-
tion will yield KGE value of 1.
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2) SPATIAL METRIC
For the spatial performance metric, we compute the Struc-
tural Similarity Index (SSI), which measures the similarity
between two fields by comparing their luminance, contrast,
and structure. The components of SSI are defined as:

l (x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(7)

c (x, y) =
2σxσy + C2

σ 2
x + µσ 2

y + C2
(8)

s (x, y) =
σxy + C3

σxσy + C3
(9)

where Equations 5, 6, and 7 each represents Luminance, Con-
trast, and Structure. µx and µy depicts the mean values of the
two fields, σx and σy represents the standard deviations, and
σxy represents the covariance. C1, C2, and C3 are constants
to stabilize the division (for cases where mean or standard
values are close to zero) and is set to 0.01 for C1 and C2,
0.005 for C3. The final SSI overall combines these three
components by:

SSI (x, y) = l (x, y) × c (x, y) × s (x, y) (10)

SSI can range from 0 to 1, where the value close to 1 repre-
sents more similarity.

3) EXTREME METRIC
Lastly, we evaluate the models based on the extreme events.
To evaluate this, we use the Fractions Skill Score (FSS).
Traditional metrics such as MSE often penalize model pre-
dictions heavily for small spatial displacements, even when
the model accurately captures general precipitation patterns.
FSS addresses this limitation by considering spatial neighbor-
hoods, making it particularly effective for assessing extreme
cases. For this analysis, we focus on extreme precipitation
events with a threshold of 7.5 mm/hr. The first step is to
threshold the data based on this heavy precipitation case.
Next, we calculate the neighborhood fractions. For each grid
point (i, j), we compute the fraction of grid points within a
surrounding 5 km neighborhood that exceed the threshold,
denoted as f (i, j), The FSS is then calculated using the
formula:

FSS = 1 −

∑
i,j (fpred (i, j) − fobs(i, j)∑

i,j
(
fpred (i, j)2 + fobs (i, j)2

) (11)

FSS values range from 0 to 1, where a value close to 1 indi-
cates a perfect model prediction.

Additionally, we classify each scene as ‘‘extreme’’ or
‘‘non-extreme’’ by examining its maximum precipitation
pixel. Specifically, we use a threshold of 20 mm/hr—
corresponding to the 95th percentile of the maximum pre-
cipitation across all samples. Any scene whose maximum
pixel meets or exceeds this threshold is labeled ‘‘extreme,’’
and all others are considered ‘‘non-extreme.’’ Based on these
labels, we then compute precision, recall, and the F1 score

as follows:

Precision =
True Positive

True Positive+ False Positive
(12)

Recall =
True Positive

True Positive+ False Negative
(13)

F1 =
2 × Precision× Recall
Precision+ Recall

(14)

IV. RESULTS
A. METRIC-BASED EVALUATION
We compare the performance of three models—cGAN_ext,
cGAN, and ESPCN—using multiple metrics, as summarized
in Table 1. In terms of mean squared error (MSE), cGAN_ext
achieves the lowest value (2.10), closely followed by cGAN
(2.12), while ESPCN is noticeably higher at 2.54. This indi-
cates that both cGAN_ext and cGAN provide a closer overall
fit to the observed data compared to ESPCN.

To assess temporal dynamics, we compute the tempo-
ral correlation coefficient (TCC) for the area-averaged time
series of precipitation. Both cGAN_ext and cGAN reach
0.99, reflecting their strong capability to capture rapid, real-
world fluctuations, whereas ESPCN stands at 0.98. Despite
the small numerical difference, these high correlations under-
score that the adversarial training in cGAN_ext and cGAN
helps preserve short-term variability more effectively than
ESPCN’s purely convolution-based approach.

In evaluating overall hydrological fidelity via the
Kling-Gupta Efficiency (KGE), cGAN_ext again leads with
0.58, followed by cGAN at 0.56, and ESPCN at 0.40. This
gap confirms that incorporating adversarial objectives—
particularly the multi-head extension in cGAN_ext—further
strengthens the consistency between model outputs and the
observed precipitation distribution. We also measure the
Structural Similarity Index (SSI) to gauge spatial quality,
where both cGAN_ext and cGAN attain 0.93, while ESPCN
trails at 0.78, suggesting that the U-Net-based adversarial
methods capture fine spatial details more effectively.

For extreme events, a threshold-based Fractions Skill
Score (FSS) indicates that cGAN_ext attains 0.87, marginally
surpassing cGAN at 0.85 and ESPCN at 0.84. Moreover,
although the Precision for extreme classification is perfect
(1.0) across all three models, the Recall varies substan-
tially: cGAN_ext improves recall to 0.23 over cGAN’s
0.21, while ESPCN lags at 0.13. Consequently, cGAN_ext
achieves the highest F1 score (0.38), cGAN the second-
highest (0.35), and ESPCN the lowest (0.24). This pattern
confirms that cGAN_ext’s multi-head Critic helps capture
rare but high-intensity precipitation events more reliably than
the other approaches.

Overall, cGAN_ext consistently outperforms or closely
matches cGAN in every metric, with ESPCN generally show-
ing lower scores. By integrating a specialized extreme-event
classification head, cGAN_ext demonstrates improved accu-
racy in both bulk statistics and tail events, making it a
strong candidate for operational precipitation downscaling.
The metrics used in this comparison are presented in Table 1.
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TABLE 1. Evaluation metrics for cGAN_ext, cGAN and ESPCN.

B. VISUAL CASE EVALUATION
We evaluate selected test cases visually to illustrate the com-
parative performance of cGAN_ext and ESPCN. We focus
on three timesteps: June 29, 2023, at 18:40; July 5, 2023,
at 21:40; and July 8, 2023, at 07:00. Each timestamp exhibits
high precipitation rates and distinct evolving patterns. To cap-
ture temporal dynamics, we show a two-hour window around
each time and compare results to the ground truth.

Figures 4 through 6 display precipitation fields for each
selected period. The first column is MRMS (true precipita-
tion), followed by the downsampled MRMS (model input) in
the second column. The third and fourth columns depict the
outputs from cGAN_ext and ESPCN, respectively.

From visual inspection, cGAN_ext generally replicates the
MRMS patterns more closely than ESPCN. In Figure 4,
a west-to-east precipitation front appears; cGAN_ext bet-
ter preserves the front’s width and structure. Similarly,
in Figure 5, the narrow branch of precipitation that emerges
after 21:40 is more clearly captured by cGAN_ext, whereas
ESPCN underestimates the intensity and extent of this fea-
ture. In Figure 6, the Y-shaped precipitation structure between
06:40 and 07:20 stands out more distinctly in cGAN_ext,
highlighting its ability to track fine-scale patterns and sharp
transitions.

These qualitative gains stem from the adversarial training
inherent in cGAN_ext. While ESPCN relies on a pixel-wise
objective for upscaling, cGAN_ext’s Critic drives the Gener-
ator to produce more realistic precipitation fields, capturing
narrow bands and evolving structures that match the true data
distribution more closely. This advantage is especially visible
in complex precipitation systems requiring the preservation
of both global configuration and localized details.

V. SUMMARY AND DISCUSSIONS
A. SUMMARY
This study introduced three models—cGAN_ext, cGAN, and
ESPCN—for downscaling coarse-resolution meteorological
data into fine-resolution precipitation fields. In cGAN_ext
and cGAN, we leverage a conditional Generative Adversarial
Network framework under the Wasserstein GAN with gra-
dient penalty (WGAN-GP), where a U-Net Generator learns
to reconstruct high-resolution precipitation from atmospheric
variables such as T2M, MSL, TCWV, and downsampled
precipitation inputs (PR), concatenated with a noise tensor.
This U-Net design preserves both large-scale features and

FIGURE 4. Precipitation patterns derived from MRMS (first column),
downsampled MRMS (PR; second column), cGAN_ext estimations (third
column), and ESPCN estimations (fourth column). The case begins on
June 29, 2023, at 17:40 (first row) and is displayed at 20-minute intervals.

small-scale rainfall structures through a Bottleneck and skip
connections, while the WGAN-GP Critic stabilizes adversar-
ial training by applying gradient penalties.

We evaluated cGAN_ext, cGAN, and ESPCN across
multiple metrics, including mean squared error (MSE), tem-
poral correlation, Kling-Gupta Efficiency (KGE), structural
similarity (SSI), fractions skill score (FSS) for extremes,
and precision–recall statistics for identifying high-intensity
events. Both cGAN variants outperformed ESPCN in captur-
ing fine-scale precipitation details, with cGAN_ext slightly
surpassing standard cGAN in terms of heavy rainfall rep-
resentation. Visual inspections of challenging precipitation
events confirmed that cGAN_ext and cGAN generate sharper
rainfall fronts, narrower bands, and more realistic local
structures than the purely convolution-based ESPCN. Over-
all, the WGAN-GP framework enabled stable training and
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FIGURE 5. Same as Figure 4, but for the case on July 5, 2023, at 20:40.

robust spatiotemporal fidelity, especially for extremes, which
are typically the most impactful yet difficult aspect of
downscaling.

B. MODEL DISCUSSION
The key distinction among the three models lies in how
they handle realism and rare events. ESPCN, as a baseline
super-resolution CNN, learns upsampling via pixel-shuffling
but relies purely on pixel-wise losses. While it reconstructs
precipitation fields fairly well, it tends to smooth out extreme
rainfall. By contrast, cGAN’s adversarial training pushes the
Generator to fit the observed precipitation distribution more
closely, capturing localized intensity gradients and sharper
transitions. Building on cGAN, cGAN_ext introduces an
additional extreme-classification output in its Critic, encour-
aging the Generator to produce high-intensity precipitation
where real observations exceed a threshold. This multi-head
Critic mechanism provides a direct incentive for reproducing

FIGURE 6. Same as Figure 4, but for the case on July 8, 2023, at 06:00.

rare but critical tail events, yielding modest yet meaningful
improvements over cGAN in metrics tied to extremes.

C. IMPLICATIONS
Several implications arise from this work. First, demon-
strating that cGAN_ext (and to a slightly lesser extent,
cGAN) excels at modeling high-intensity rainfall highlights
its potential utility in operational contexts—such as flash
flood forecasting or agricultural planning—where accurate
depiction of extremes is vital. Second, the explicit condi-
tioning on multiple meteorological variables ensures that
the downscaled fields remain consistent with broader atmo-
spheric states, an essential requirement for hydrological or
agronomic modeling chains. Third, leveraging WGAN-GP
addresses common stability issues in GAN training, provid-
ing a path toward more robust deep learning–based down-
scaling frameworks. Finally, because real-world weather
systems vary in complexity, this methodology can be adapted
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to incorporate additional atmospheric drivers or ensemble
strategies, enhancing its applicability to diverse climates and
future change scenarios.

D. LIMITATIONS AND FUTURE DIRECTIONS
While the cGAN_ext showed clear advantages, there are a
few limitations thatmerit attention. First, the study region fea-
tured relatively modest topographical complexity, allowing
precipitation to be driven largely by synoptic- or meso-scale
forcings rather than orographic effects. More complex ter-
rains could require additional atmospheric variables—like
wind fields at multiple pressure levels—to capture the inter-
play of moist flow and orography. Furthermore, as with many
data-driven deep learning approaches, regions or periods
lacking extensive observations may challenge the network’s
ability to generalize. Robust data assimilation or transfer
learning strategies could help bridge such gaps.

Another point of extension involves ensemble downscal-
ing, in which multiple plausible realizations of precipitation
fields are generated for a given condition. Such an approach
would better represent inherent uncertainties, especially
under future or extreme climate conditions [38], [39], [40],
[58], [59]. Coupling these methods with operational or
real-time forecasting systems, potentially by integrating them
into rapid-update cycles, would also be valuable for agricul-
tural stakeholders needing frequent, high-resolution updates
on imminent precipitation threats.

Other machine learning approaches beyond GANs can
also be employed for tasks of this nature. For example,
diffusion models [60], [61], [62] have demonstrated strong
potential in synthesizing high-resolution fields, particularly
under data-scarce or topographically complex conditions.
Exploring these methods alongside cGANs could yield
more robust downscaling solutions and further advance
high-resolution precipitation modeling. Finally, computa-
tional considerations—both in terms of training large
U-Net-like networks on extended spatial-temporal domains
and running them in real-time operational contexts—should
be weighed. Future studies might explore model compres-
sion or more advanced GPU parallelization to handle larger
volumes of data while maintaining the network’s fidelity for
small-scale rainfall structures. By iteratively refining these
aspects, cGAN-based downscaling stands to become an even
more potent tool in climate impact analysis, offering height-
ened precision and detail where it matters most for critical
sectors like agriculture and disaster risk management.
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