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Abstract

Urban flooding arises from complex mechanisms, making it challenging to capture accurately with
a single detection method. This study evaluates three complementary approaches to detect flooding
across three Chicago neighborhoods: (i) Sentinel-1 synthetic aperture radar (SAR), offering
weather-independent, high-resolution (10 m) imagery of surface inundation; (ii) the storm water
management model (SWMM), simulating combined sewer overflow and drainage performance;
and (iii) citizen-generated 311 service requests, capturing observed flooding impacts. By analyzing
six storms ranging from severe to mild, we examine how each source uniquely contributes to
identifying urban flood events. SAR imagery effectively identifies standing water but can miss brief
flooding due to satellite revisit constraints. SWMM provides detailed insights into system-wide
drainage behavior yet may underestimate localized street-level flooding. Meanwhile, 311 calls
reflect real-world flooding impacts but are vulnerable to underreporting. Statistical overlap
analysis highlights chronic flood hotspots repeatedly identified across multiple detection methods,
indicating persistent infrastructure and topographic vulnerabilities. Temporal analysis further
reveals that while SWMM flooding aligns closely with rainfall peaks, 311 calls typically precede or
persist beyond these peaks. Our findings emphasize the value of using satellite observations,
hydrological modeling, and resident-reported data in a complementary manner to better interpret
patterns in flood timing, severity, and spatial distribution—providing insights that can inform
targeted infrastructure improvements and contribute to urban flood resilience planning.

1. Introduction

1.1. Background and motivation

Flooding ranks among the most damaging natural disasters globally, causing substantial economic losses and
significant human impacts (IFRC 2018, Hamers et al 2023). These events include pluvial (flash and urban),
coastal, and fluvial (river) floods. Furthermore, flooding often is compounded with other hazards and
consequences, such as landslides, agricultural loss, degradation of water supply, and public health issues,

© 2025 The Author(s). Published by IOP Publishing Ltd
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resulting in compounded losses which are much more than from flooding alone (AghaKouchak et al 2020,
Zhang and Villarini 2020, Ming et al 2022).

Urban flooding refers to flooding that occurs in developed areas due to overloading of local drainage
systems rather than overflow of natural water bodies (Hammond et al 2015, Mignot et al 2019, Qin 2020,
Balaian et al 2024), and it poses significant challenges for cities worldwide (Tingsanchali 2012, Huong and
Pathirana 2013, National Academies of Sciences 2019, Zhang and Villarini 2020). Unlike riverine or coastal
floods, urban floods are often hyper-local, sometimes flooding one street or building while the adjacent area
remains dry. A major reason is the prevalence of impervious surfaces (roads, rooftops, parking lots) in cities,
which prevent rainfall from infiltrating into soil. Instead, rainwater rapidly runs off, leading to large volumes
of surface flow in a short time. If storm sewers and drains cannot carry this runoff away, water accumulates
in streets and basements (Sorensen and Mobini 2017, Huang et al 2018, Wang et al 2022, Zhang et al 2023).
Many urban drainage systems around the world were built decades ago and are now aging and struggling to
cope with modern extremes (Marsalek et al 1993, Delleur 2003, Piadeh et al 2022). These older systems often
operate under outdated capacity assumptions, making them vulnerable to extreme precipitation, increased
impervious cover, and infrastructure failures (e.g. sediment-clogged or collapsed pipes) causing property
damage, traffic disruptions, and public health hazards (Lane et al 2013, Fernandez et al 2015, Singh et al
2018, Zhong et al 2018, Zhu et al 2018).

1.2. Study area

The city of Chicago in Illinois, United States, presents a compelling case study of urban flooding due to its
unique hydrological context (Markus et al 2012, Zhu et al 2016, Cousins 2017, Wing et al 2020). Chicago is a
coastal megacity (metro area population 9.3 M) located on the shore of Lake Michigan, the world’s
third-largest freshwater lake in the world by its surface area. The city is served by a combined sewer system
that carries both stormwater and sanitary sewage in the same pipes. During heavy rain, this combined system
is prone to becoming overwhelmed. When these pipes and storage tunnels surcharge, the excess flow is
released as combined sewer overflows (CSOs) into local waterways. To address this, Chicago invested in a
massive Tunnel and Reservoir Plan (TARP, or ‘Deep Tunnel’) to hold excess stormwater (Dalton and Kenny
1980, Scalise and Fitzpatrick 2012). Even after decades of construction and expansion of this system,
moderate storms still trigger CSOs and urban floods. The city’s hydrology dynamics is further complicated
by its relationship with Lake Michigan. Historical engineering projects reversed the flow of the Chicago River
to send wastewater out of the Lake Michigan basin. However, during extreme storm events, the city
sometimes must open emergency outlets to divert floodwaters into Lake Michigan, which is Chicago’s source
of drinking water. These backflows and overflows pose environmental and health risks, as they can
contaminate both inland rivers and the lake with untreated sewage. In summary, Chicago’s aging combined
sewer infrastructure, extensive paved surfaces, and proximity to Lake Michigan create a perfect storm of
factors that make urban flooding a frequent and pressing challenge (National Academies of Sciences 2019).

1.3. Approaches to flood detection and management

Addressing this challenge requires accurate detection and prediction of flood events. Yet, this is complicated
by limited data availability, the interplay between natural and built environments, and the complex
hydrodynamic processes that govern water movement in highly developed areas. In a multi-source urban
flood monitoring context, an additional difficulty is that available datasets differ fundamentally in what they
measure, as well as in their spatial and temporal resolutions and susceptibility to specific biases. Direct
comparisons therefore require careful alignment and interpretation, with the understanding that these
datasets do not necessarily capture the same aspects of a flood event.

Satellite-based remote sensing has emerged as a powerful tool for flood detection and mapping (Mason
et al 2009, Wu et al 2012, Tanim et al 2022). It offers wide-area coverage and access to flooded regions that
may be dangerous or inaccessible on the ground. Satellites equipped with synthetic aperture radar (SAR)
(e.g. Sentinel-1, RADARSAT) actively emit microwave signals toward Earth and measure the return signal
(backscatter) (Tsyganskaya et al 2018, Amitrano et al 2024). Radar has the advantage of being
weather-independent—microwaves penetrate clouds and are not reliant on sunlight, so SAR can image
floods at night or through storm clouds. Floodwater is often detectable in SAR because a calm water surface
reflects the radar signal away (acting like a mirror), returning little energy to the satellite and appearing as a
dark area. This makes SAR extremely useful for flood mapping, especially when optical images are
unavailable due to cloud cover. In terms of spatial detail, modern SAR offers resolutions of 10 m or better,
comparable to optical methods (Uddin et al 2019, Bauer-Marschallinger et al 2022, Islam and Meng 2022).
However, the temporal resolution of SAR data can be low; Sentinel-1, for instance, has a 6-12 day revisit
period, and it can cause difficulty in providing a complete time series of flood progression. The additional
challenge with SAR is that city landscapes produce very complex radar backscatter: buildings, vehicles, and
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other structures cause multiple reflections, bright spots, and shadows in the radar image. Floodwater in
urban streets may be obscured by the ‘clutter’ of strong returns from buildings or even appear as bright radar
returns due to corner reflections (Notti et al 2018, Shen et al 2019, Amitrano et al 2024).

Another approach to urban flood monitoring and prediction is through hydrological and hydraulic
modeling (Mignot et al 2019, Bulti and Abebe 2020, Nkwunonwo et al 2020, Luo et al 2022a, 2022b). These
physics-based models simulate how rainfall becomes runoff and how that runoff moves through urban
drainage networks. A prominent example is the United States Environmental Protection Agency’s storm
water management model (SWMM) (Jiang et al 2015, Bisht et al 2016, Rai et al 2017). SWMM tracks water
movement from rainfall to runoff to flow in pipes and can simulate surcharging manholes and overflows
onto streets. By simulating an entire storm event, the model can predict where and when flooding will occur
in the urban system, given the network configuration. A key strength of SWMM is its balance between
physical detail and computational efficiency. It incorporates the essential physics and infrastructure of urban
drainage, so it can accurately capture phenomena like backwater effects in pipes or detention basin storage.
However, the accuracy of a SWMM model heavily depends on the quality of input data (e.g. rainfall patterns
and rates) and calibration. Building a detailed SWMM model for a city like Chicago requires extensive data,
such as maps of the sewer network (e.g. pipe diameters, invert elevations, connectivity), land use data to
estimate imperviousness and hydrologic parameters, and high-resolution rainfall data (from rain gauges or
weather radar) to drive the simulations.

In recent years, crowdsourced information has emerged as a valuable source of data for urban flood
monitoring, such as 311 calls (Elmore et al 2014, 2015, Mazzoleni et al 2017, Dixon et al 2021, Helmrich et al
2021, Lee et al 2025). In many cities, including Chicago, residents report flooding issues through 311 service
requests—a non-emergency municipal hotline or mobile phone application for city services (Rainey et al
2021, Agonafir et al 2022a, 2022b, Negri et al 2023). These 311 flood reports are essentially citizen-generated
data points indicating where and when flooding has been observed on the ground. This approach to flood
monitoring leverages the observation capability of the community to capture localized flood impacts in real
time. Because they are reported by citizens experiencing the event, 311 flood reports can provide very timely
information at a fine spatial resolution (often an exact address or intersection). They can fill gaps between
city-managed monitoring systems and research-grade measurements by providing additional, real-time
observations. Furthermore, 311 data directly indicate impacts on residents and infrastructure. This human
perspective is crucial for emergency response and damage assessment. However, not all floods are reported
by 311 calls. The likelihood of a resident calling 311 can depend on awareness, trust in city services, and
socio-economic factors. Research has found that 311 flood data may be biased by neighborhood
demographics—some high-risk areas generate surprisingly few reports, possibly due to residents feeling
nothing will be done, while other areas report more frequently for even minor issues (Wang et al 2017, White
and Trump 2018, Kontokosta and Hong 2021). Thus, absence of 311 reports does not always mean absence
of flooding; it might reflect under-reporting. Conversely, communities with higher levels of digital access,
civic engagement, and familiarity with the 311 system may generate multiple reports for the same flooded
intersection. Furthermore, a limitation of relying on 311 alone is that it provides a binary indication (flood
happened or not, at a location) but not the depth or extent of flooding. It is thus hard to quantify severity
from a service request without additional context (Choi et al 2018, White and Trump 2018, Hagen et al 2019).

1.4. Study objectives

Given the three distinct flood detection approaches outlined above, this study aims to compare three
independent flood indicators—satellite-based SAR imagery, physics-based SWMM simulation, and
citizen-reported 311 service requests—in an aligned spatial and temporal framework. Our goal is to evaluate
their relative strengths, limitations, and areas of convergence, rather than to define an absolute ‘true’ flood
extent, which is not available for Chicago. We focus on identifying recurrent hotspots where multiple
datasets independently indicate flooding, as well as divergence patterns that reveal data-specific biases and
uncertainties. In this context, ‘integrated approach’ refers to triangulating multiple independent indicators to
identify consistent spatial patterns and systematic divergences, rather than combining datasets through
physical data assimilation. This framing reflects our aim to reveal complementary insights from datasets that
capture related but not identical aspects of flooding.

In this study, we will examine where these data sources converge or diverge in detecting flood events
across focus communities of Chicago. By analyzing past flood events, we will identify cases where one data
source catches flooding that others miss and where overlap occurs across datasets. The comparative
assessment will highlight the strengths and weaknesses of each. More importantly, we seek to demonstrate
their complementarity—how combining these approaches can lead to a more robust urban flood monitoring
system. Ultimately, the insights derived from this study will inform improved flood management strategies.
By leveraging the relative strengths of satellites, models, and crowdsourced data together, city officials and
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emergency managers can move toward a more reliable and timely urban flood monitoring and warning
system. The overarching objective is to demonstrate that an integrated approach—in this case, for the city of
Chicago—offers a more complete picture of urban flooding than any single data source alone, thereby
enhancing the city’s ability to prepare for, respond to, and recover from flood events.

2. Data

2.1. Study region and dates

For the analysis, we focus on the three community regions in Chicago: Humboldt Park, Woodlawn, and
Chatham (figure 1). These sites are three historically flood-prone community areas in Chicago. Their
combined sewer networks, constructed in the late nineteenth and early twentieth centuries, face capacity
challenges when intense rainfall events exceed system design thresholds, leading to basement backups and
street ponding. Humboldt Park’s dense impervious surfaces channel runoff quickly into undersized sewers,
causing localized flash flooding (Lee ef al 2024, Mohamed et al 2025). Woodlawn, located along the South
Side lakefront, is characterized by predominantly impermeable soils and limited natural drainage capacity,
which exacerbates flood vulnerability when combined with its proximity to Lake Michigan (McGuire 2018).
In Chatham, which sits on low-lying land, stormwater readily pools, causing repeated damage to homes that
lie below street grade (Keenan et al 2019, Feldman 2021). Beyond these physical conditions, the three
neighborhoods also share socioeconomic challenges, including aging housing stock, higher proportions of
low- to moderate-income households, and historic underinvestment in infrastructure, which collectively
increase vulnerability to flood impacts (Cousins 2017, Keenan et al 2019, Wing et al 2020). Their documented
history of severe inundations offers valuable data for assessing different flood detection methods, while their
diverse geographic and social settings make them representative of broader citywide issues.

In selecting target days for analysis, we aimed to capture a range of flood severities—from severe to
mild—while also accommodating the revisit interval and data availability constraints of Sentinel-1 SAR
imagery. Events were chosen based on the following criteria: (i) classification as local storms by the National
Weather Service (NWS), (ii) availability of SAR scenes with minimal cloud contamination, and (iii) coverage
across the severity spectrum (high, moderate, and low precipitation). The six selected events are 8 May 2019
(high precipitation), 20 May 2019 (high), 1 June 2019 (high), 17 September 2023 (high), 14 April 2019
(moderate), and 9 March 2019 (low precipitation). We note that only one moderate and one
low-precipitation event were included; as such, conclusions for these categories should be interpreted with
caution. The first four events listed above (17 September 2023; 1 June 2019; 20 May 2019; and 8 May 2019)
were classified as severe storms (exceeding the 90th percentile in daily maximum precipitation, averaged over
Chicago metropolitan region, based on the historical record), 14 April represented a moderate storm (above
the 75th percentile), and 9 March featured low precipitation (below the 25th percentile). This carefully
curated selection ensures a robust and diverse evaluation of urban flood conditions that aligns with the
NWS-defined impactful weather events.

2.2. Precipitation data

The precipitation data in this study come from the Multi-Radar/Multi-Sensor (MRMS) system. MRMS
system provides high-resolution precipitation data with exceptional spatial (1 km) and temporal (2 min)
resolution (Zhang et al 2016). By integrating radar networks, surface and upper-air observations, lightning
detection systems, satellite imagery, and forecast models, MRMS offers comprehensive and robust
precipitation estimates across North America. Studies confirm its reliability in capturing spatial and
temporal rainfall dynamics when validated against ground-based measurements and single radar systems
(Zhang et al 2016, Bytheway et al 2019, Habibi et al 2021, Moazami and Najafi 2021). The typical error rates
of MRMS compared to in situ measurements are reported to be under 10 mm in RMSE or 5%-10% of
precipitation rate (Zhang et al 2016, Rivera-Giboyeaux and Weinbeck 2024). We validated the MRMS
product with available NWS weather station around Chicago region for the selected study period and it
showed average of 7.3 mm of RMSE and 3% error of precipitation rate.

2.3. Remote sensing data (SAR)

SAR imagery used in this study originates from Sentinel-1 satellites (Geudtner et al 2014, Mullissa et al
2021). The preprocessing workflow begins with thermal noise removal using specialized filters designed to
enhance the signal-to-noise ratio, followed by radiometric calibration to correct sensor-dependent variations
and mitigate atmospheric influences (Filipponi 2019). Speckle filtering techniques, such as Lee and Gamma
MAP filters, are then applied to reduce granular noise inherent to SAR data while preserving important
spatial resolution and textural details (Lee et al 1994). Additionally, geometric correction and precise image
registration are carried out to align multi-temporal SAR datasets, facilitating accurate temporal comparisons

4



I0OP Publishing

Environ. Res.: Water 1 (2025) 035007 ] Lee et al

(c) Humboldt Park

(b) Chicago

(a) United States

500 m

Figure 1. Map of the (a) United States and (b) city of Chicago and the community sites of focus in this study: (c) Humboldt Park,
(d) Woodlawn, and (e) Chatham. The images are unaltered overlays, sourced from Google Maps. Adapted with permission from
Map data © 2025 Google.

of flood extents. Collectively, these preprocessing steps optimize the SAR imagery for robust and reliable
flood detection and analysis (Mullissa et al 2021).

Subsequent to preprocessing, convolutional neural networks (CNNs) are employed to automatically
classify flooded and non-flooded areas by learning complex patterns directly from the SAR backscatter data,
thereby eliminating reliance on predefined threshold values (Fan et al 2019, Sharma and Saharia 2025). CNN
utilizes convolutional layers with local receptive fields to extract spatial features effectively from SAR data,
analyzing spatial distributions and textures of backscatter intensities. The network was trained specifically for
this study on a labeled dataset derived from urban flooding events in Chicago, enabling it to identify subtle
differences among water bodies, flooded regions, and other urban land-cover types through temporal
analysis of SAR imagery. The CNN model dynamically adjusts decision thresholds based on learned features,
thus accurately identifying flooded areas even in complex urban settings characterized by radar-specific
artifacts, such as shadowing effects or double-bouncing signals. This adaptive, context-sensitive thresholding
significantly enhances flood-mapping accuracy and efficiency in heterogeneous urban environments. We
emphasize that all SAR data utilized were processed entirely in-house from raw Sentinel-1 Level 1 ground
range detected products rather than external preprocessed datasets.

Although Sharma and Saharia (2025) are referenced to contextualize the broader CNN-based
methodological framework, the CNN classifier in this research was independently developed, trained, and
applied specifically to this study achieving an overall accuracy of 81%. Additional methodological details,
including comprehensive CNN model parameters and training procedures, are available in the
supplementary material.

Following the collection of the high-resolution (10 m) flood extent data, we preprocessed it to align with
other data sources by aggregating values onto a 0.025° (approximately 250 m) latitude—longitude grid over
the three selected sites. For each grid cell, we calculated the fraction of flood-inundated surface area to
represent the magnitude of flooding, but excluded portions covered by buildings or permanent water bodies.
Building footprints were obtained from the Chicago Data Portal (Kassen 2013), and permanent water
coverage came from National Oceanic and Atmospheric Administration’s (NOAA) C-CAP archive (NOAA).
As a result, the preprocessed SAR product represents the fraction of exposed land surface that is flooded.
Grid cells in which more than 90% of the area is occupied by buildings or permanent water were masked out
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(a) Humboldt ark
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Figure 2. SWMM subcatchment boundaries (red) overlaid with satellite images across the three study neighborhoods: (a)
Humboldt Park, (b) Woodlawn, and (c¢) Chatham. The images are unaltered overlays from Google Maps. Adapted with
permission from Map data © 2025 Google.

in the final dataset. In this study, a pixel is considered flooded in SAR when the CNN-classified flood fraction
exceeds the binary threshold (0.05) after excluding buildings (32% of total data) and permanent water bodies
(3% of total data). This definition applies to all detections within the event period, regardless of duration,
and results are aggregated at the event level.

2.4. SWMM model outputs

The SWMM model used in this study incorporates a detailed representation of the urban drainage system,
simulating hydrologic and hydraulic processes across the Chicago region (Cantone and Schmidt 2011, Nania
et al 2015, Luo et al 2021). It consists of 699 subcatchments, 32 441 nodes, and 34 051 links, including key
hydraulic components such as CSO junctions, drop shafts, pumps, orifices, weirs, gates, and storage units.
High-resolution MRMS rainfall data from 633 rain grids drive the hydrological processes, accurately
capturing the spatial variability of rainfall across the study area.

The model employs the Modified Green—Ampt infiltration method (Almedeij and Esen 2014, Mao et al
2016) to dynamically account for soil moisture conditions, providing precise rainfall partitioning between
infiltration and surface runoff. Dynamic wave flow routing (Rossman and Supply 2006) simulates
stormwater movement within the drainage system, capturing unsteady flow conditions, backwater effects,
surcharging, and flow reversals typical of complex urban drainage systems. The EXTRAN surcharge method
assesses node capacity exceedance, identifying urban flooding hotspots when infrastructure becomes
overwhelmed (Pachaly et al 2020). Surface ponding in depressions is explicitly represented, accounting for
temporary water accumulation.

SWMM-derived flood values are initially associated with corresponding subcatchments (figure 2), with
flooding assumed to affect entire drainage areas. Excess runoff movement is tracked through the stormwater
network, computing potential surcharging and surface ponding locations. The routing component evaluates
conditions at over 32 000 nodes, pinpointing infrastructure limitations. Model simulations consistently
exhibited low continuity errors, with runoff quantity errors below 0.05% (where the error is calculated as
following equation (1) below) across events. These low errors affirm the reliability and numerical stability of
hydrologic and hydraulic computations, accurately capturing the severity and distribution of modeled
flooding (i.e. the number and density of nodes exceeding capacity and associated ponding volumes) under
varying storm conditions, rather than literal inundation footprints.

Inflow — (Outflow + Final Storage)

Conti ity E =100 x
ontinuity Error (%) Inflow

: (1)

However, SWMM has inherent limitations in representing certain urban flooding scenarios, primarily
capturing flooding within stormwater networks and not simulating extensive overland flow beyond drainage
infrastructure. Consequently, flooding from poor surface drainage, blocked storm inlets, basement flooding,
or inadequate storm drain maintenance might be underestimated.

For compatibility with remote sensing data, SWMM flood outputs are interpolated onto a 250 m grid,
enabling direct comparison with SAR-derived flood extents. To aggregate SWMM results onto the 250 m
grid, we applied an area-weighted averaging procedure: the flooding volume estimated for each
subcatchment was distributed across the grid cells intersecting that subcatchment, proportional to the
fraction of subcatchment area contained in each cell. The resulting flood value for each grid cell represents
the sum of these contributions, normalized by the grid-cell area. This method ensures that the gridded field
reflects the spatial distribution of modeled flooding severity without bias toward larger subcatchments. Grid
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cells without overlapping catchment areas were masked to maintain data alignment. We emphasize
that SWMM outputs represent a process-based scenario, not a direct observation. In the absence of
neighborhood-scale in situ measurements, we verified plausibility through internal continuity checks and
agreement in flood-prone zones with documented historical problem areas from City of Chicago reports.
For further discussion on SWMM model parameterization and validation, refer to the supplementary
section S2. A ‘flood’ in SWMM output refers to any modeled surcharge or surface ponding at a node within
the event window, regardless of whether the exceedance lasted for minutes or hours. All such exceedances are
included equally in the spatial analysis. The SWMM output is presented in cubic feet per second (cfs) and
represents the overflow rate from surcharged nodes in the drainage network. This value quantifies the
amount of water that exceeds the sewer system’s capacity and is discharged onto the surface, directly
indicating locations of model-predicted street-level flooding.

2.5.311 Service requests

We obtained 311 service requests data from the Chicago Data Portal, which is a public data resource where
the City of Chicago shares all of its municipal records and datasets (Kassen 2013). Each record contains the
nature of the request, the date and time of submission, and latitude—longitude coordinates. Specifically for
basement and street flooding, we filtered requests containing the phrases ‘water in basement’ or ‘water on
street.

For the spatial analysis, we used each request’s location for both the flooding event day and the following
day. Next, we applied a Gaussian smoothing technique (o = 0.5) on a 1 m resolution grid, where the
smoothing parameter o controls the spatial spread of influence from each report location (Diggle 1985,
Nychka 2000). A value of a = 0.5 was selected to represent localized flooding effects within a limited radius
while avoiding excessive smoothing that could dilute spatial precision. We then aggregated the smoothed
results to 250 m grid cells, consistent with our other data sources. This two-step process ensures a more
spatially continuous representation of 311 flood-related requests, thereby providing a broader view of
localized flooding patterns.

2.6. Summary of resolution alignment
To enable direct, quantitative comparison across datasets with different native resolutions and temporal
characteristics, we aligned both dimensions before analysis.

e Temporal alignment: SAR scenes capture standing water conditions at a single overpass time; SWMM out-
puts represent instantaneous surcharges at 5 min intervals; 311 service requests are logged at the time of
report, which may lag flood onset by minutes to hours. For each flood event, SAR imagery was selected at
the closest acquisition to peak rainfall, SWMM outputs within £1 h of that time, and 311 reports from the
event day plus the following day were included to capture residual flooding.

e Spatial alignment: All datasets were aggregated to a 0.025° (~250 m) grid as mentioned in previous sections.

3. Methods

3.1. Statistical methods

In this section, we present a detailed analysis of spatial agreement between flood datasets using both binary
and continuous metrics that are widely used in spatial statistics and flood related works as an evaluation tool
(Rahmati et al 2020, Deidda et al 2021, Safavi et al 2021, Darabi et al 2022, Macharyulu et al 2022, Rydén
2022, Chandran et al 2024). The rationale for employing both types of metrics is to capture complementary
aspects of agreement: binary metrics focus on the spatial overlap of detected flood areas, while continuous
metrics assess the similarity in the magnitude and spatial distribution of flood intensities.

3.1.1. Binary metrics

Binary metrics are calculated by first thresholding each dataset to create binary flood maps. The
thresholds—SAR (0.05), SWMM (0.0), and 311 (0.01)—were determined using the 10th percentile of pixel
values from multiple events, combined with visual inspection of flood maps, to ensure that retained pixels
represented meaningful flooding signals while minimizing noise. After thresholding, a pixel is considered
‘flooded’ if its value exceeds the threshold, and ‘not flooded’ otherwise. This approach allows for direct
comparison of spatial patterns, even when the original data are on different scales or units. Here we apply
three binary metrics: Matthews correlation coefficient (MCC) (Chicco and Jurman 2020), Intersection over
Union (IoU) (Rezatofighi et al 2019), and Dice Coefficient (Shamir et al 2019).
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MCC is a robust measure of binary classification agreement, particularly valuable in the presence of class
imbalance. It is defined as:
TP x TN — FP x FN

MCC = (2)
/(TP + FP) x (TP + FN) x (TN + FP) x (TN + FN)

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false negatives,
respectively. In cases of little or no detected flooding, MCC effectively accounts for class imbalance and offers
a balanced view of agreement by simultaneously considering both flooded and non-flooded pixels. However,
MCC frequently becomes undefined in low-flooding scenarios due to its strict dependence on nonzero
counts in all contingency-table elements. Hence, its applicability is somewhat limited to scenarios where
flooding is extensive enough to produce sufficient positive detections.

IoU, or the Jaccard Index, quantifies the spatial overlap between two binary masks:

_|anBl TP

loU = - .
°~ T JAUB| ~ TP+ FP +EN

(3)

IoU values range from 0 (no overlap) to 1 (perfect overlap). Generally, IoU values peak during major
flood events due to a higher proportion of true-positive pixels, signifying strong spatial alignment between
datasets. Conversely, during minor or localized flood events, IoU values typically decline sharply because
overlaps are minimal. IoU is intuitive, widely understood, and directly interpretable as the proportion of
overlapping flooded areas. However, IoU is particularly sensitive to the selected threshold levels and can be
harsh when overlaps are limited, potentially underestimating agreement when flood areas are small or
spatially fragmented.

Dice Coefficient, or the F1 score, is another metric of spatial overlap:

2|AnB| 2TP

- , 4
|A|+|B| ~ 2TP + FP + EN )

Dice =

Dice values also span from 0 (no overlap) to 1 (perfect overlap). Dice Coefficient, closely related to IoU,
generally provides slightly more forgiving overlap assessments due to its greater weighting of true positives.
While Dice shares IoU’s threshold sensitivity, its slightly lenient nature is beneficial when evaluating events
characterized by small-scale flooding, thereby offering a complementary perspective alongside IoU.

3.1.2. Continuous metrics
Continuous metrics assess the similarity in magnitude and spatial patterns of flooding intensities between
datasets, extending beyond the binary overlap approach. Due to inherent differences in measurement scales
among the SWMM, SAR, and 311 datasets—which respectively use overflow rate (cfs), flood fraction, and
smoothed request density (i.e. the Gaussian-smoothed density of 311 flood reports)—all values were
standardized to a common 0-1 range prior to analysis. This step was necessary to enable a direct comparison
of relative magnitudes and spatial patterns for the metric calculations. The metrics employed include
Pearson’s correlation coefficient (Sedgwick 2012), Kendall’s 7 coefficient (Noether 1981), and Willmott’s
Index of Agreement (Willmott et al 2012).

Pearson’s r measures the linear relationship between the continuous flood intensity values of two
datasets:

e i (i —%) (i—7) .
Vi =2 S i)

High positive r values indicate strong linear agreement in flood intensity patterns, while negative values
indicate inverse relationships. Pearson’s correlation coefficient is highly informative regarding linear
relationships between flood intensity distributions, particularly useful when datasets exhibit strong linear
associations. However, Pearson’s coefficient assumes normality and linearity of data distributions, making it
sensitive to outliers and potentially misleading when flood intensities have skewed distributions or nonlinear
relationships.

Kendall’s 7 coefficient can be calculated as follows:

(5)

(Number of concordant pairs) — (Number of discordant pairs) ©)
T =

in(n—1)

where a pair is concordant if the order of values is the same in both datasets, and discordant otherwise. A
positive 7 indicates consistent ranking order between datasets, while negative 7 values suggest disagreements
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in intensity rankings across pixels. Kendall’s 7 provides robust ordinal-level insights into dataset similarity, as
it does not require normality or linearity assumptions. This robustness makes it well-suited for datasets with
non-normal or non-linear intensity distributions. Nevertheless, 7 captures only rank agreement rather than
actual flood magnitude, thereby potentially overlooking important differences in flood intensity magnitudes.

Willmott’s Index of agreement (absolute version) quantifies the degree to which one dataset matches
another, accounting for both bias and variance:

PR ¥ Sy CEp )
2i—t (i =+ xi — %)

where x; and y; are the values from the two datasets and X is the mean of the reference dataset. In this study,
we adopted a consistent convention: when 311 was part of the comparison, 311 served as the reference
dataset (e.g. SAR-311, SWMM-311); for SAR-SWMM comparisons, SWMM served as the reference. This
approach reflects the role of 311 as direct observations of community impact and SWMM as the
physics-based simulation benchmark. Values of Willmott’s Index range from 0 (no agreement) to 1 (perfect
agreement). Higher index values indicate greater similarity between the spatial distribution and magnitude
of flooding intensities between datasets. Because the denominator depends on the mean of the reference
dataset, the index is not symmetric, and swapping reference datasets can change the resulting value.
Therefore, results should be interpreted with caution and in the context of the chosen reference. Nonetheless,
because the index is applied consistently across all datasets and storm events in this study, it provides a
reliable basis for the relative comparison of agreement between the different data sources. Willmott’s Index of
Agreement delivers a comprehensive and balanced measure of dataset similarity, combining both magnitude
and variability into one metric.

Collectively, employing multiple metrics mitigates the weaknesses of any single measure, enabling a
robust and comprehensive characterization of dataset agreement. The combination of binary and continuous
metrics ensures that both the spatial extent and intensity patterns of flooding are thoroughly evaluated,
providing valuable insights into dataset performance and reliability.

(7)

3.1.3. Consideration of metric behaviors

When evaluating spatial agreement across multiple flood datasets, it is crucial to recognize that each metric
may respond uniquely under scenarios of systematic bias, such as consistent overprediction or
underprediction of flooding. Systematic bias occurs when one dataset repeatedly indicates flooding,
regardless of actual flood presence, potentially leading to misleading interpretations if only a single metric is
considered. For instance, binary metrics such as IoU and Dice coefficients primarily measure spatial overlap,
which means they can yield artificially high scores in situations where one dataset significantly overestimates
flood extents. Even when the actual flood conditions are limited or localized, large false-positive areas can
result in substantial overlap with true positives, thereby inflating IoU and Dice values. Thus, while these
metrics are excellent for capturing the direct spatial alignment of flood events, their sensitivity to systematic
overprediction biases is limited.

In contrast, MCC is specifically structured to penalize biased predictions more effectively, given its
explicit incorporation of true negative counts. Because MCC accounts for both correct and incorrect
classifications across flooded and non-flooded areas, it typically provides a more rigorous indication of
spatial agreement under biased conditions, sharply reducing scores when systematic overprediction occurs.
However, MCC itself becomes limited in low-flooding scenarios, as the coefficient may become unstable or
undefined due to insufficient positive detections. Therefore, MCC, while robust in moderate to extensive
flooding scenarios, should be supplemented by other metrics to fully understand dataset performance.

Continuous metrics, including Pearson’s correlation coefficient, Kendall’s 7, and Willmott’s Index of
Agreement further complement the binary metrics by explicitly evaluating agreement in flood intensity
distributions. Pearson’s correlation coefficient, sensitive to linear magnitude relationships, tends to decline
significantly under biased scenarios where flood intensities systematically deviate from the true distribution.
Meanwhile, Kendall’s 7, focusing on rank-order consistency, robustly reveals situations where the relative
ranking of flood intensities remains consistent or diverges across datasets, offering insight into underlying
structural differences in intensity distributions. Willmott’s Index, by accounting for both magnitude bias and
variance, is particularly effective at detecting and quantifying intensity-level discrepancies. Substantially
reduced Willmott’s values signal magnitude mismatches or systematic bias in flood characterization.

Consequently, no single metric alone adequately captures all aspects of spatial and intensity agreement—
particularly under systematic bias conditions. Employing multiple complementary metrics is therefore
critical. Integrating binary metrics (IoU and Dice for direct spatial overlaps), MCC (for balanced binary
classification evaluation), and continuous metrics (Pearson’s correlation, Kendall’s 7, and Willmott’s Index)
ensures a comprehensive and nuanced characterization of agreement.
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3.2. Identification of multi-source flooding overlap

For three sources of data—SAR, SWMM and 311—collected on four high-precipitation dates in three
neighborhoods, we adopt a unified framework to detect places where the indicators overlap. Each dataset was
first aligned to a shared spatial grid and evaluated for flooding in every pixel at each date. We then required
that at least half of these events (i.e. two out of four) show simultaneous flooding to classify an overlap. In
other words, pairwise overlap (e.g. SAR-SWMM) was flagged if two datasets agreed on at least two of the
four dates, while triple overlap was flagged if all three sources agreed for at least two events. This procedure
yielded a series of ‘agreement maps, highlighting pixels that consistently appear across independent detection
methods, thereby identifying potential flood hotspots and underscoring where data sources diverge.

4, Results

The following subsections describe trends and differences observed across SAR, SWMM, and 311 datasets;
these are not intended as validations against a definitive ground truth, but as comparative perspectives on
urban flooding.

4.1. Patterns observed in SAR data

Figures 3—5 show the 250 m-gridded MRMS precipitation, SAR, SWMM, and 311 flooding data for six target
dates across the three neighborhoods. The MRMS precipitation data represent total accumulated
precipitation during the storm event and were linearly interpolated to match the 250 m analysis grid. The
aggregated SAR data tend to depict broad flooding coverage because the original 10 m resolution—after
CNN-based removal of most building backscattering noise—retains small reflectivity signals when
resampled to 250 m, which may appear as flooded cells. Nevertheless, differences in intensity between events
and neighborhoods are evident. SAR systematically detects a larger flood extent compared to both SWMM
and 311. This pattern arises because radar-based flood mapping is sensitive to even small changes in surface
water reflectivity, meaning shallow ponding or wet surfaces can be classified as flooding, whereas SWMM
requires that drainage thresholds be exceeded before flooding is recorded. The tendency for SAR to relatively
overclassify flooding is particularly notable in Chatham and Woodlawn, where large contiguous areas appear
flooded despite limited corroboration from SWMM or 311. Additionally, the spatial distribution of MRMS
precipitation does not always correspond to SAR-detected flooding. This mismatch occurs because surface
water may persist or be detected in locations with shallow ponding or low infiltration rates regardless of
rainfall intensity. In Woodlawn, the high impervious cover amplifies surface runoff, but SAR-based detection
still appears to overestimate flood coverage relative to SWMM simulations, likely because SAR cannot
differentiate between shallow wetting and actual inundation depth. This behavior, while sometimes leading
to discrepancies with modeled or reported data, also means SAR can highlight areas with surface water
retention that other datasets might miss.

4.2. Insights from SWMM simulations

The SWMM model often predicts no flooding in a catchment for moderate or low precipitation events—
such as those on 14 April 2019 and 9 March 2019—because it requires drainage thresholds to be exceeded
before flooding is registered. This behavior contrasts with SAR detections in such events, which can still
identify surface wetness. In Woodlawn, SWMM generally predicts smaller flood extents than SAR, reflecting
how stormwater is routed into drainage infrastructure in the model, potentially underestimating surface
water accumulation in poorly drained or unmodeled locations. In Humboldt Park, SWMM identifies specific
storm sewer surcharge points concentrated around drainage bottlenecks, producing localized predicted
flooding patterns. While SWMM explicitly incorporates impervious surface fractions (derived from detailed
datasets from the Metropolitan Water Reclamation District, MWRD) within its modified Green—Ampt
infiltration calculations, discrepancies between its predictions and observed flooding in SAR or 311 suggest
other important influences, such as localized infrastructure issues like blocked inlets or collapsed pipes,
surface runoff conditions that exceed modeled capacity, or minor topographic depressions that are not
explicitly represented in the model inputs. These differences underscore the importance of considering both
modeled and observational data sources to account for unmodeled or emergent flooding mechanisms in
urban systems.

4.3. Signals from 311 reports

The 311 service request data, though smoothed for spatial analysis, remain inherently point-based and reflect
localized reports from residents. Rainfall accumulation patterns in figures 3—5 sometimes align with 311
request clusters, but such alignment is far from universal. Differences between rainfall patterns and 311
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Figure 3. MRMS precipitation accumulation during the storm event (with building footprints), satellite-based flooding
observation (SAR, pixel percentage), model-based flooding estimate (SWMM, cubic feet per second) and self-reported flooding
service requests (311, smoothed calls) for Humboldt Park. (a)—(d) MRMS, SAR, SWMM, and 311 data for 17 September 2023.

(d)—(f), (g)-(1), (j)—(1), (m)—(0), and (p)—(r) same as (a)—(c) but for 1 June 2019, 20 May 2019, 8 May 2019, 14 April 2019, and 9
March 2019, respectively.

clusters can be driven by variations in infrastructure performance, the routing of surface runoff, and social or
behavioral factors influencing reporting behavior. These factors include population density, public awareness
of reporting systems, and accessibility during flood events. The 311 datasets thus capture a community-based
perception of flooding impacts rather than purely physical flood occurrence. In Humboldt Park, 311 requests
often show flooding beyond SWMM-predicted areas, suggesting vulnerabilities not fully represented in the
modeled drainage system. In Chatham, 311 reports correspond more closely to SAR detections than to
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Figure 4. SAR, SWMM, and 311 flooding service request (311, smoothed calls) for Woodlawn.

SWMM predictions, consistent with known ponding in low-lying areas and the potential underestimation of
such flooding by SWMM. While 311 data provide valuable localized information, they are subject to
reporting biases and incomplete coverage, meaning they are best interpreted in conjunction with other
datasets.

4.4. Within-method and cross-metric comparisons
The quantitative comparison of SAR, SWMM, and 311 flooding datasets reveals clear differences in
agreement that depend strongly on event magnitude and spatial context (table 1). During major events, such
as 17 September 2023 and 14 April 2019, binary overlap metrics (IoU, Dice) were consistently high for certain
dataset pairs. In Humboldt Park on 17 September 2023, SAR-SWMM achieved an IoU of 0.91 and Dice of
0.96, while SWMM-311 recorded IoU and Dice values of 0.96 and 0.98, respectively. These values indicate
substantial similarity in mapped flood extents when conditions produce widespread flooding. However, the
corresponding continuous metrics tell a different story. For SAR-SWMM in the same event and location,
Pearson’s r was 0.0012 and Willmott’s index was 0.0004, demonstrating that, despite large spatial overlaps,
the two datasets differed markedly in how they distributed flooding intensity within the area boundary.

For smaller or more spatially fragmented events, both binary and continuous metrics tended to be low,
and cases of undefined MCC were common due to the scarcity of flooded pixels. In Woodlawn on 1 June
2019, SAR-SWMM recorded an IoU of only 0.09 and a Dice of 0.17, showing minimal common flooded
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Figure 5. SAR, SWMM, and 311 flooding service request (311, smoothed calls) for Chatham.

area. Where MCC could be computed, such as for SAR-311 in Woodlawn on 17 September 2023, the value
was modest (0.17), indicating weak agreement even when some overlap existed.

The continuous metrics often exposed discrepancies not apparent from binary results. In Humboldt Park
on 17 September 2023, SAR-311 had an IoU of 0.83 but a negative Pearson’s r (—0.1385), reflecting inverse
relationships in pixel-level intensities. Willmott’s index further underscored these differences: SWMM-311
typically had relatively high scores (e.g. 0.63 in Humboldt Park on 17 September 2023), suggesting similar
spatial intensity patterns between modeled surcharging and resident-reported impacts, while SAR-SWMM
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Table 1. Statistical comparison for each dataset pair (SAR, SWMM, 311), region (Humboldt Park, Woodlawn, Chatham), and date,
using thresholds of 5% (SAR), 0 (SWMM), and 0.01 (311) for IOU calculation.

Pair Region Date MCC IoU Dice Pearson  Kendall =~ Willmott
SAR-SWMM  Humboldt Park 9 March 2019 — 0.1121 0.2016 — — 0.5016
14 April 2019 — 0.6379 0.7789 — — 0.3675
8 May 2019 — 0.3707  0.5409 0.1288 —0.0059 0.0883
20 May 2019 — 0.3276  0.4935 0.1134 0.0776 0.2749
1 June 2019 — 0.2155 0.3546 —0.0058 0.0569 0.0059
17 September 2023 — 09138 0.955  0.0012 0.0506 0.0004
Woodlawn 9 March 2019 — 0.0676  0.1266  0.0382 0.1162 0.0815
14 April 2019 — 0.1757  0.2989 — — 0.4295
8 May 2019 — 0.2838 0.4421 0.0429 0.0011 0.0703
20 May 2019 — 0.4324 0.6038 —0.1015 —0.0311 0.012
1 June 2019 — 0.0946 0.1728 —0.0371 —0.1212 0.0001
17 September 2023 — 0.8649 0.9275 0.2752 0.1789 0.001
Chatham 9 March 2019 — 0.2581 0.4103 —0.0537 —0.0255 0.2218
14 April 2019 — 0.5591 0.7172  —0.0252  0.0096 0.3244
8 May 2019 — 0.2903 0.45 0.1135 0.0653 0.0789
20 May 2019 — 0.4409 0.6119 0.0899 —0.0188  0.0052
1 June 2019 — 0.5161 0.6809 0.0827 —0.0261 0.001
17 September 2023 — 0.8065 0.8929 —0.0238 0.0518 0.0032
SAR-311 Humboldt Park 9 March 2019 —0.1999 0.068 0.1273 —0.148 —0.2227 0.4125
14 April 2019 —0.1851 0.2424 0.3902 —0.183 —0.1807  0.3397
8 May 2019 —0.0027 0.3472 0.5155 —0.046 —0.0097 0.2722
20 May 2019 —0.1182 0.125  0.2222 —0.0181 —0.106  0.3398
1 June 2019 0.0303 0.1406 0.2466 —0.0506 0.039 0.3556
17 September 2023  —0.027  0.8261 0.9048 —0.1385 —0.0942 0.2138
Woodlawn 9 March 2019 —0.1737 0.0517 0.0984 —0.0547 —0.0532 0.3134
14 April 2019 —0.0649 0.1538 0.2667 0.0095 —0.0553  0.3777
8 May 2019 0.1455 0.3095 0.4727 0.106 0.1085 0.3297
20 May 2019 0.0992 0.2768 0.4336 0.0414 0.0407 0.3722
1 June 2019 —0.0637 0.0972 0.1772 —0.1845 —0.0988 0.2119
17 September 2023  0.1678 0.7374 0.8489 0.1068 0.0041 0.2933
Chatham 9 March 2019 —0.0117 0.1489 0.2593 0.0416 —0.0427 0.4016
14 April 2019 0.1936 0.4145 0.586 —0.0005 0.0972 0.3717
8 May 2019 —0.0853 0.3034 0.4655 —0.1428 —0.1329 0.2233
20 May 2019 —0.0027 0.3602 0.5297 —0.0691 0.0113 0.2853
1 June 2019 0.1433 0.5269 0.6901 —0.1274 —0.0613 0.3059
17 September 2023  0.0515 0.644  0.7834 —0.051 —0.0042 0.2754
SWMM-311  Humboldt Park 9 March 2019 — 0.6561 0.7923 — — 0
14 April 2019 — 0.3758 0.5463 — — 0
8 May 2019 — 09172 0.9568  0.0055 —0.0002  0.5765
20 May 2019 — 0.3885 0.5596 —0.0369 —0.0386 0.5309
1 June 2019 — 0.1975 0.3298 0.1247 0.0775 0.6363
17 September 2023 — 0.9618 0.9805 —0.0668 0.0861 0.6292
Woodlawn 9 March 2019 — 0.7386  0.8497 0.146 —0.221  0.5707
14 April 2019 — 0.4545 0.625 — — 0
8 May 2019 — 0.9318 0.9647 0.0227 —0.3397 0.5175
20 May 2019 — 0.2614 0.4144 —0.0908 —0.1697 0.5944
1 June 2019 — 0.8295 0.9068 —0.2793 —0.1249 0.5859
17 September 2023 — 0.875 0.9333 —0.0369 —0.2663 0.5884
Chatham 9 March 2019 — 0.5294 0.6923 —0.046  —0.1207 0.6071
14 April 2019 — 0.2605 0.4133 —0.0362 —0.0856 0.5923
8 May 2019 — 0.8235 0.9032 —0.1 —0.2603  0.6214
20 May 2019 — 0.8487 0.9182  0.0229 —0.042 0.6495
1 June 2019 — 1 1 0.269 0.0939 0.638
17 September 2023 — 0.7899 0.8826 —0.037 —0.0316  0.6372
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values were extremely low (e.g. 0.0004 for the same case), consistent with fundamentally different intensity
distributions.

Sensitivity testing of binary thresholds confirmed that high IoU or Dice values can sometimes result from
small absolute overlaps when overall flood coverage is low. In such cases, visual inspection of figures 3—-5
often revealed that the apparent agreement was confined to a few scattered pixels, rather than representing
meaningful spatial correspondence. This reinforces the need to interpret binary metrics in tandem with
continuous measures, which capture differences in magnitude and spatial distribution that binary
classification alone cannot reflect.

Opverall, the metric results show that high spatial overlap during major floods does not necessarily
translate into agreement in flood intensity or distribution. Continuous measures repeatedly revealed
mismatches—particularly for SAR-SWMM—where one dataset mapped much broader extents or detected
different physical expressions of flooding. This combined metric approach therefore provides a more
complete and realistic assessment of agreement, highlighting where methods converge in flood mapping and
where they diverge in ways that matter for interpretation and application.

4.5. Multi-source flooding overlap result
The spatial distributions of flood-indicating overlaps among the SAR, SWMM, and 311 datasets across the
neighborhoods of Humboldt Park, Woodlawn, and Chatham are illustrated in figure 6. Overlap maps were
generated by identifying grid cells that exhibited simultaneous flooding detections in at least two out of four
analyzed high-precipitation events (17 September 2023; 1 June 2019; 20 May 2019; and 8 May 2019). We
considered three types of pairwise overlaps (SAR-SWMM, SAR-311, SWMM-311) as well as the triple
overlap involving all three data sources.

Clear differences in spatial overlap patterns among the datasets were observed. SAR-SWMM overlaps
appeared relatively sparse and isolated, highlighting limited agreement between SAR-derived surface
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Figure 6. Pairwise and triple overlap maps of flooding for three neighborhoods—Humboldt Park (left column), Woodlawn
(middle column), and Chatham (right column)—considering four high-precipitation events. Rows correspond to different
overlap categories: (a)—(c) SAR-SWMM overlap, (d)—(f) SAR-311 overlap, (g)—(i) SWMM-311 overlap, and (j)—(1) all three (SAR,
SWMM, 311). In each panel, building footprints are shown in gray, while red pixels indicate locations that met or exceeded the
two-out-of-four threshold for the specified overlap category.
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flooding detections and SWMM-predicted surcharges. This limited overlap suggests that the hydrologic
model, despite explicit incorporation of impervious surface data, primarily captured flooding events driven
by stormwater infrastructure constraints. Consequently, SWMM did not identify many locations of surface
inundation identified by SAR, particularly those associated with shallow, widespread surface ponding or
areas not directly connected to modeled drainage systems.

In contrast, SAR-311 overlaps were notably broader and more spatially extensive, indicating better
alignment between areas identified by residents as flooded and regions identified by SAR imagery. However,
visual inspection of flood maps frequently indicated that statistical binary metrics (e.g. IoU, Dice) suggested
higher spatial agreement than was visually apparent. This occurred because binary overlap metrics can
exaggerate agreement when flooding is spatially fragmented or when one dataset systematically overpredicts
flood extents, a condition frequently observed with SAR. This bias is particularly evident in urban settings,
where SAR tends to capture shallow moisture and wet surfaces not necessarily considered flooding by
residents or infrastructure-focused models like SWMM. Thus, SAR-311 overlaps must be interpreted
cautiously, with complementary continuous metrics employed to assess true flood intensity agreement.

SWMM-311 overlaps were intermediate, forming moderate-sized clusters that tended to differ spatially
from SAR overlaps. SWMM typically identified flooding associated with drainage bottlenecks, while 311 calls
reflected community-reported flooding, influenced not only by visible inundation but also by social and
behavioral factors (White and Trump 2018, Lee et al 2025). Therefore, the SWMM-311 overlaps emphasized
locations where community impacts coincided with modeled drainage limitations, highlighting genuine
infrastructure vulnerabilities.

The limited number of locations exhibiting triple overlaps (SAR-SWMM-311) represent robustly
identified chronic flood ‘hotspots. These areas repeatedly exhibited evidence of significant flooding impacts
from all three independent methods, underscoring critical infrastructure or topographic issues necessitating
targeted interventions.

To address potential biases in our overlap analysis explicitly, we conducted sensitivity tests varying the
binary thresholds used for overlap detection. Results confirmed that binary metrics, while valuable for clearly
identifying spatial overlaps, often provided overly optimistic spatial agreement values when flooding was
sparse or fragmented. Continuous metrics consistently showed reduced agreement in these conditions,
providing critical complementary information on flooding intensity differences.

In summary, this integrated multi-source flooding overlap analysis demonstrates that binary spatial
metrics alone can misrepresent true flood risk, particularly when visually inspected flood maps suggest
weaker spatial correlations. By interpreting binary overlaps in conjunction with continuous similarity
metrics, we achieve a more accurate, realistic, and nuanced understanding of urban flood dynamics. These
insights strongly support an integrated observational and modeling framework, combining the strengths of
SAR imagery, hydrologic modeling, and community-sourced reports for improved flood risk assessment and
infrastructure planning.

4.6. Temporal comparison of flooding events

To investigate the temporal dimension of flooding in each dataset, we analyze the temporal progression of
three datasets: area total MRMS precipitation, SWMM-estimated flooding, and 311 service requests. SAR is
excluded from this analysis because it provides only a single scene with a fixed revisit interval, making it
insufficient to capture the evolution of a single event. Figure 7 shows the time series for these datasets across
each study region (Humboldt Park, Woodlawn, and Chatham) and each flood event date. Each column
corresponds to one site, while each row represents a distinct event. The red line indicates the MRMS
precipitation intensity (in mm hr~!), the blue line depicts the SWMM-predicted flow rate (in cubic feet per
second), and the green dots mark 311 service requests reported in the respective neighborhood.

A key observation is that intense precipitation events (large peaks in the red line) generally coincide with
spikes in the SWMM flow rate (blue line), typically occurring shortly after the heaviest rainfall. This pattern
is especially pronounced in the first four rows, which represent severe precipitation. The lag between rainfall
peaks and SWMM -estimated flooding highlights the time required for water to be routed through the
stormwater system, indicating that pipe flow dynamics and detention storage influence the flood response.
By contrast, moderate or low precipitation events (shown in the fifth and last rows) often remain below the
SWMM’s flood threshold, resulting in minimal SWMM-predicted flooding. Nonetheless, 311 service
requests (green dots) still occur even in these lower-intensity events, illustrating that in certain regions
infrastructure or drainage capacity remains below the precipitation-drive flow even during small events.

Another noteworthy pattern emerges when comparing the timing of 311 calls to precipitation peaks and
SWMM estimates. Although the SWMM model typically predicts flooding within one to two hours of peak
rainfall, 311 calls can persist for a longer period and, in some cases, even precede the main precipitation
event. Several factors can explain this discrepancy. For instance, intense rainfall in other parts of the city can
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Figure 7. Time series of area-summed MRMS precipitation rate (red line), SWMM-predicted flood overflow rate (blue line), and
311 service requests (green dots) for each storm event. Each column represents a study region, and each row represents a different
date. Please note that the y-axis scales for both MRMS precipitation and SWMM flooding are intentionally varied between events.
This is because the events differ in magnitude by several orders, and using a fixed scale would obscure the temporal dynamics of
the less severe storms. The top four rows correspond to severe precipitation events, the fifth to a moderate event, and the bottom
to a low-precipitation event.

travel through the interconnected sewer system, causing backups and basement flooding that trigger 311 calls
before the storm arrives locally. Additionally, some early reports may reflect residual flooding from earlier
rainfall, while other mechanisms also play a role: localized storm cells can produce heavy rainfall not fully
captured in the area-averaged data, infrastructure limitations like pre-saturated soils or clogged drains can
trigger flooding earlier than the storm peak, and residents may report flooding earlier than local precipitation
peaks, for example due to upstream inflows, drainage delays, or residual water from prior rainfall.

Overall, the SWMM model’s node-based framework generally exhibits a more binary response: once
rainfall surpasses its operational threshold, predicted flooding can rise sharply, but remains negligible
otherwise. In contrast, 311 reports capture a broader spectrum of on-the-ground realities. This dataset often
captures smaller-scale flooding events—such as basement seepage or minor street ponding—that do not

17



10P Publishing

Environ. Res.: Water 1 (2025) 035007 ] Lee et al

necessarily meet the model’s threshold, highlighting the need for integrating human-reported data with
physical modeling to refine flood risk assessments. This divergence underscores how real-world flooding
dynamics can be more complex than model predictions suggest.

5. Discussion and conclusion

5.1. Evaluation of flood delineation methods

This study evaluated three complementary approaches to urban flood monitoring—satellite remote sensing
(using SAR imagery), hydrologic simulation (via the SWMM model), and crowdsourced data (from 311
service requests)—in three flood-prone Chicago neighborhoods (Humboldt Park, Woodlawn, and
Chatham). The findings demonstrate the value of a multi-source strategy. Areas where different data sources
agree, or overlap, represent zones of high-confidence flooding and serve as crucial anchor points for our
analysis. Simultaneously, the unique information from each data source reveals different facets of the flood
event, offering a more comprehensive picture than any single method could alone. However, this picture
should not be as definitive proof of flood occurrence in the absence of additional independent field
validation (e.g. gauges, sensors, or post-event surveys). Rather, it is a comparative synthesis that highlights
areas of consensus and disagreement between different indicators, each with its own strengths, limitations,
and potential biases.

o Satellite SAR imagery: our results confirm that SAR provides broad coverage and weather-independent
detection but also highlight its tendency to identify larger flood extents than other methods. For instance,
SAR consistently flagged widespread shallow inundation in Chatham and Woodlawn (figures 4 and 5), even
when SWMM and 311 data showed more localized impacts. This underscores SAR’s sensitivity to surface
moisture but also the risk of overestimation in dense urban settings.

¢ Hydrologic modeling (SWMM): SWMM simulations effectively captured drainage bottlenecks and sur-
charges, as illustrated in Humboldt Park where modeled flooding aligned with 311 reports around infra-
structure constraints (figure 3). However, SWMM underrepresented certain locations reported by residents
or detected by SAR, particularly where localized inlet failures or small-scale ponding occurred. This supports
the conclusion that while SWMM is valuable for system-wide dynamics, it may not resolve highly localized
flooding.

o Crowdsourced flooding reports (311): the 311 data provided critical insight into community-level impacts,
including reports that persisted after precipitation had subsided (figure 7). This temporal persistence cap-
tured the duration of standing water, which neither SAR (due to revisit gaps) nor SWMM (due to threshold-
based surcharging) represented. However, our overlap analysis (figure 6) also revealed uneven reporting
across neighborhoods, reflecting demographic and behavioral biases consistent with prior studies.

5.2. Multi-modal approaches

Despite the inherent limitations and biases in each dataset, the locations where two (‘pairwise’) or all three
(‘triple’) sources converge offer compelling evidence of chronic flooding issues. When different
methodologies consistently point to the same flood-prone zones, this convergence provides stronger
evidence that those areas experience recurrent flooding or drainage stress. This convergence often signals
underlying infrastructure vulnerabilities, such as insufficient storm-sewer capacity, inadequate drainage
design, or topographic depressions that prolong surface water pooling. For instance, if SAR repeatedly
detects standing water in a specific area, the SWMM model predicts sewer overflows there, and community
members consistently submit 311 flood complaints for the same location, the collective evidence becomes
difficult to dismiss as random or one-off occurrences. These multi-dataset overlaps not only confirm that a
given spot is prone to recurrent flooding but also help localize the root cause—whether it be storm-sewer
surcharging, blocked catch basins, or low-lying terrain—thereby guiding more focused remedial action.
However, while agreement across SAR, SWMM, and 311 increases confidence, it should not be interpreted as
definitive proof of flood occurrence in the absence of independent validation.

o SAR-SWMM overlap: when surface-water detection from SAR aligns with SWMM’s simulated surcharges,
the consensus suggests that rainfall has overwhelmed sewer capacities. While the absence of 311 calls may
indicate that residents do not perceive these events as severe or persistent, this pairwise overlap still highlights
possible weak points in the drainage system that may become more problematic under heavier or prolonged
storms.

o SAR-311 overlap: agreement between radar-detected inundation and resident complaints demonstrates that
water has accumulated long enough for people to notice and report it. Although the SWMM model may not
confirm flooding in these locations—possibly due to localized issues like precipitation below the threshold
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to trigger node-based flooding—this pairing confirms that standing water presents a visible nuisance to
affected communities. At the same time, it is important to note that residents in some neighborhoods may
be less likely to file 311 reports due to social or behavioral factors, meaning that the absence of reports does
not imply absence of flooding.

o SWMM-311 overlap: When modeled sewer overflows coincide with 311 complaints, it points to drainage-
system constraints that manifest in on-the-ground experiences. These scenarios may involve basement
flooding, short-lived street-level surcharges, or backups that do not remain long enough to be captured
by SAR. However, it is also important to note that SWMM does not account for flooding caused by clogged
inlets, collapsed pipes, or under-designed infrastructure, so certain real-world incidents reported through
311 may not appear in the model output. Even so, the occurrence of both model-predicted and resident-
reported flooding underscores structural vulnerabilities that merit further investigation.

e Triple overlap (SAR, SWMM, and 311): locations where all three sources converge provide the most con-
clusive evidence of chronic flood risk. In these ‘hotspots, the flooding mechanism is overwhelmingly clear,
showing surface ponding (SAR), sewer constraints (SWMM), and community impact (311), all reinforcing
one another. These areas should be prioritized for targeted interventions—such as upsizing storm-sewer
infrastructure, clearing blocked catch basins, and improving grading or green infrastructure—to mitigate
repeated flood occurrences and protect both public safety and property. At the same time, focusing solely
on triple overlaps risks overlooking other vulnerable locations. Pairwise overlaps or consistent signals from
a single dataset can still highlight critical issues—such as under-reported flooding in disadvantaged com-
munities or localized drainage failures—that may not register across all three measures. Therefore, triple
overlaps should be treated as a conservative, high-confidence subset of hotspots, but not as the sole basis for
decision-making. Effective flood risk management should integrate multiple lines of evidence, engineering
knowledge, and local input to avoid neglecting areas in urgent need of improvements.

5.3. Implications for flooding detection and event response

A key benefit of this integrated multi-source perspective lies in its potential to enhance early warning and
emergency response. Near-real-time combination of precipitation measurements with SWMM simulations
could provide indicative warnings regarding neighborhoods or drainage sub-catchments that may be at
higher risk of flooding during storm events, provided that model assumptions and uncertainties are carefully
considered. If these model predictions are quickly corroborated by a surge in resident-submitted 311 reports
or validated with post-storm SAR imagery, city agencies can swiftly identify and prioritize emerging flood
issues. Such rapid identification allows proactive measures—such as the deployment of portable pumps or
preemptive road closures—and enables quicker dispatch of maintenance crews, helping to prevent minor
incidents from escalating into larger hazards.

Another practical advantage of this multi-source approach is strategic infrastructure maintenance and
targeted flood mitigation planning. Over time, patterns revealed by combined data sources identify locations
consistently affected by flooding. For instance, persistent ponding detected by SAR at an intersection,
regularly simulated sewer overflows by SWMM at the same spot, and recurrent basement backups reported
by residents via 311 suggest a clear priority location for infrastructure upgrades. Leveraging this convergent
evidence empowers decision-makers to strategically invest in necessary improvements—such as upsizing
drainage pipes, installing green infrastructure, or conducting preventative maintenance—instead of merely
reacting to severe or emergency flooding events. Thus, multi-source data can systematically inform
long-term capital improvements, leading to increased urban resilience.

Furthermore, the principle of integrating remote sensing, physical models, and community-sourced
reports could extend beyond flooding to other urban hazards. Each hazard—such as extreme heat events,
water main breaks, sinkholes, or air quality crises—has unique indicators and modeling requirements.
However, adopting a similar multifaceted monitoring strategy could produce valuable, actionable insights.
For instance, satellite imagery, numerical simulations, and citizen-generated data could collectively track
heatwaves or pinpoint recurring air-quality issues. The key insight is that integrating diverse data sources
generates a more robust and validated understanding of localized hazards, greatly improving situational
awareness and informing more effective interventions across various climate-related risks.

5.4. Summary and future research

This study demonstrates the effectiveness of a combined flood monitoring approach, integrating satellite
SAR imagery, SWMM hydrologic modeling, and community-generated 311 reports within three flood-prone
neighborhoods of Chicago. Each individual method provides distinct insights into flood dynamics, but their
integration significantly enhances the detection, assessment, and response capabilities related to urban
flooding. Locations identified by the convergence of multiple sources emerged as clear priority areas,
highlighting persistent flooding risks and underlying infrastructure vulnerabilities.
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Future research should aim at advancing data frequency, accuracy, and integration techniques to further
improve flood prediction, detection, and response. Expanding SAR coverage through additional satellite
constellations, refining SWMM simulations using higher-resolution precipitation inputs, and employing
advanced machine learning approaches to analyze 311 reporting patterns will enhance urban flood-
monitoring capabilities. Additionally, emerging data sources—including traffic cameras, connected vehicle
sensors, and social media—could offer more dynamic, real-time insights into urban flood conditions.
Finally, successful operationalization of this integrated approach will require supportive policies and
institutional frameworks, ensuring that city agencies effectively utilize multi-source data to inform early
warning systems, infrastructure planning, and climate-resilience strategies. By continuously refining and
expanding these methodologies, cities will become better equipped to anticipate, mitigate, and respond to
flooding and other climate-related hazards.
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The data that support the findings of this study are openly available at the following URL/DOI: MRMS
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Sentinel-1 data for SAR calculation can be found in NASA Earthdata Portal (www.earthdata.nasa.gov/data/
platforms/space-based-platforms/sentinel-1). 311 service request data can be found in Chicago Data Portal
(https://data.cityofchicago.org/).
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