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Abstract This study quantifies how traffic congestion influences the surface urban heat island intensity
(SUHII) in Chicago using GOES LST data and Chicago Transit Authority (CTA) bus speed data. While SUHII
is characterized by a well pronounced diurnal cycle that peaks around noon, we observed changes in strength of
SUHII that were correlated with changes in traffic speed. This leads to distinct weekend and rush hour effects on
SUHII. Citywide, we observed a statistically significant correlation in which each 10 mph decrease in bus speed
is associated with an increase of 0.36°C in SUHII. That effect is stronger in highly vegetated, low‐building
areas, where traffic‐emitted waste heat is more dominant than other anthropogenic sources. These findings
highlight the importance of incorporating congestion metrics into urban heat research, offering new insights for
planners and policymakers seeking to mitigate local thermal extremes.

Plain Language Summary We measured how traffic congestion affects Chicago's surface urban heat
island (SUHII) using satellite data and bus speeds. SUHII peaks around midday. Traffic slows during the
weekend and rush‐hour. Looking at the relationship between the SUHII and the bus speeds, we find that each 10
mph drop in speed increases SUHII by 0.36°C—especially in areas with more trees and fewer buildings, where
vehicle heat dominates. Our findings highlight the need to consider congestion in urban heat research, offering
planners new ways to reduce local heat extremes and traffic demands.

1. Introduction
Urbanization has significantly altered natural environments worldwide, with the Urban Heat Island (UHI) effect
being one of the most extensively studied consequences (Deilami et al., 2018; S. W. Kim & Brown, 2021; Rizwan
et al., 2008). UHI describes the temperature disparity between urban centers and their surrounding rural or non‐
urban areas, primarily caused by the replacement of vegetated, permeable surfaces with artificial materials that
retain heat. As metropolitan regions have expanded in both population and spatial extent over recent decades, the
UHI phenomenon has intensified, leading to increased energy consumption (Baniassadi & Sailor, 2018; Lee &
Dessler, 2022; Li et al., 2019; Morakinyo et al., 2019), heightened health risks during extreme heat events
(F. Chen et al., 2023; Ebi et al., 2021; Lee & Dessler, 2023; Khosla et al., 2021), and added strain on urban
infrastructure (Baniassadi et al., 2018; Singh et al., 2021; Zhang et al., 2019).

A particular branch of UHI research focuses on the Surface Urban Heat Island (SUHI), which is derived from land
surface temperature (LST) measurements. SUHI arises from several well‐understood processes linked to urban
form and design. Common city materials such as concrete and asphalt generally have lower albedos and higher
heat capacities than natural surfaces, absorbing large amounts of solar radiation during the day and releasing heat
slowly at night. This effect is exacerbated by the dense, compact layout of cities, where narrow streets and closely
packed buildings create urban canyons that trap heat and limit airflow, reducing opportunities for cooling (Hou
et al., 2023; W. Peng et al., 2022; Shao et al., 2023). Additionally, the reduction in vegetative cover weakens
evapotranspiration, further diminishing natural cooling mechanisms (Cui et al., 2021; Paschalis et al., 2021).
Road networks, with their expansive surfaces and low reflectivity, frequently emerge as thermal hotspots,
particularly during high‐traffic periods when tailpipe emissions, engine heat, and frictional heating contribute to
localized warming (Patriota et al., 2024; Sen, 2025).

While the role of impervious surfaces and building density in exacerbating SUHI has been studied at length,
traffic congestion has received limited attention as a direct and quantifiable contributor to SUHI dynamics. Husni
et al. (2022) analyzed the contribution of vehicle counts to CUHI, but their approach relied heavily on modeling
the internal combustion heat from engines. Louiza et al. (2015) used a theoretical modeling framework to estimate
transportation's impact on urban heat, while Teufel et al. (2021) employed a regional climate model incorporating
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different anthropogenic heat sources—including traffic—to evaluate their localized weather effects. Yang
et al. (2022) found that traffic restrictions during the Olympic Games reduced Beijing's UHI, although this was an
isolated event rather than a persistent scenario for modeling the effects of traffic.

As congestion is a defining feature of many urban transportation networks—particularly in large cities with dense
road systems and frequent commuting—understanding its role in amplifying SUHI is becoming increasingly
important. However, most existing studies rely on modeling or isolated events, and there remains a notable gap in
real data‐driven research that examines traffic's contribution to SUHI during typical, day‐to‐day conditions in
major cities. Additionally, the interplay of traffic congestion with other anthropogenic heat sources—such as
waste heat from buildings and industry—and the extent to which high‐resolution temporal variations in traffic
patterns affect localized SUHI remain poorly understood. Addressing these gaps will require more comprehensive
data sets, finer‐scale analyses, and integration of multiple data streams to capture the full complexity of urban heat
dynamics.

This study focuses on the city of Chicago, Illinois, which is the third‐largest city in the U.S. with ∼2.7 million
residents. The city routinely experiences hot, humid summers, and intense heat waves have historically posed
significant public health challenges (Hayhoe et al., 2010; Klinenberg, 2015; Wilson & Chakraborty, 2019). A
notable example is the 1995 Chicago heat wave (Kaiser et al., 2007), which resulted in hundreds of fatalities and
prompted extensive research into urban heat vulnerability. In recent decades, increasing evidence suggests that
climate change could intensify future heat events, making Chicago's heat mitigation strategies all the more
important. Furthermore, Chicago is a major metropolis characterized by a robust transportation framework.
Chicago's road network encompasses a variety of traffic conditions—from heavily trafficked downtown streets to
suburban arterial roads, to expansive expressways that serve as vital commuter arteries.

This work pursues three primary objectives:

• Mapping SUHI and Traffic Patterns in Chicago: Using remote sensing data, we identify land surface tem-
perature variations along with SUHI patterns and cycles. Simultaneously, we analyze traffic data to charac-
terize the spatiotemporal dynamics of congestion across Chicago, establishing a foundation for comparing
thermal anomalies with traffic behavior.

• Quantifying Traffic Congestion's Impact on SUHI: We assess the extent to which traffic congestion con-
tributes to local SUHI intensity by integrating spatial and statistical methods to examine the relationship
between surface temperatures and congestion metrics.

• Identifying Factors that Influence Traffic's SUHI Intensity: We investigate the conditions that mediate traffic‐
driven warming, such as tree cover, road width, and building area. Understanding these factors will help refine
insights into where, when, and how traffic amplifies SUHI effects.

By addressing these objectives, this study aims to bridge the gap in knowledge concerning traffic‐related heat
emissions in everyday urban settings. Unlike studies focusing on isolated events or theoretical modeling, our real
data‐driven approach provides an empirical understanding of how routine traffic congestion contributes to SUHI.
Moreover, examining various urban features—from vegetated cover to building morphology—allows us to
distinguish how different aspects of the built environment can either mitigate or magnify traffic‐induced
warming. Ultimately, these insights not only enhance our understanding of SUHI dynamics but also guide
more targeted interventions in urban planning, ranging from strategic tree planting to congestion management
policies.

2. Data
2.1. Land Surface Temperature (LST) Data

The land surface temperature (LST) data used in this study is derived from the GOES‐16, 17, and 18 satellites
(collectively referred to as GOES) (Beale et al., 2019; Y. Yu & Yu, 2020; Y. Yu et al., 2008). Equipped with the
Advanced Baseline Imager (ABI), these satellites record infrared measurements that are processed into LST
products, maintaining an estimated error margin below 2°C (Y. Yu et al., 2011). GOES offers near‐continuous
coverage over North America at a 2 km spatial resolution and an hourly temporal resolution, allowing for
detailed monitoring of diurnal temperature variations.
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Although the spatial resolution of the GOES satellite (∼2 km) is sufficient for analyzing the traffic data aggre-
gated at a larger spatial scale, it is important to assess the sensitivity of these results against a higher‐resolution
LST product. To address this, we compared the GOES LST data with ECOSTRESS LST (∼70 m) observations.
Due to ECOSTRESS's non‐geostationary orbit, only 145 clear scenes covering the Chicago region were available
during the study period (less compared to coverage of GOES LST with over 20,000 scenes). Within these scenes,
the mean absolute error (MAE) between GOES and ECOSTRESS LST was consistently below 0.5°C.
Furthermore, the MAE for the calculated SUHI between these two data sets was less than 0.4°C, and notably,
when aggregating the LST data to match traffic zone scales, the MAE remained below 0.4°C. In all comparisons,
spatial correlations exceeded 0.9, confirming that the GOES LST product provides sufficient accuracy for our
analysis. Nonetheless, we acknowledge that this sufficiency arises partly because our traffic data is averaged over
relatively large spatial units; thus, more detailed studies using finer‐scale traffic data might necessitate higher‐
resolution thermal observations.

This analysis presented here focuses on the warm season (May–September) from 2018 to 2024, a 7‐year window
in which SUHI effects are most prominent. By confining the data set to these months, we capture peak urban heat
conditions and thereby ensure sufficient temporal and spatial variability to assess the influence of traffic
congestion on SUHI patterns. Given that LST measurements are unavailable during cloudy conditions, we only
include days where more than 75% of grid cells remain cloud‐free, producing a data set that closely approximates
clear‐sky LST values. We only include hours where at least 75% of the GOES grid cells remain cloud‐free. Hours
failing this criterion are excluded from the analysis.

2.2. Land Cover Data and Urban to Rural Distinction

To delineate urban and rural areas for SUHI calculations, we use the 10 m resolution Sentinel‐2 land cover data
set, which annually classifies surface types including water, trees, flooded vegetation, crops, built areas, bare
ground, snow/ice, clouds, and rangeland. Validation efforts for the Sentinel‐2 land cover product indicate around
80% accuracy globally (Phiri et al., 2020; Rumora et al., 2020; Topaloğlu et al., 2016). Because Sentinel‐2 land
cover data are categorical, we identify the dominant land‐cover type for each GOES cell by counting the
occurrence of each category within that cell's 10 m pixels. The category with the highest count is assigned as the
cell's representative land cover.

Urban areas are defined at GOES resolution within Chicago's main region, where traffic data is available. Rural
reference areas are identified as non‐urban, non‐water grids within a 50–100 km radius of Chicago's urban center
to exclude suburban influences while maintaining proximity for meaningful temperature comparisons. The se-
lection of this range is typical for a megacity analysis (Kong et al., 2025; W. Liu et al., 2009; Luo et al., 2025).
Figures 1a and 1b illustrate the resulting urban/rural classification and corresponding urban GOES grid.

Figure 1. (a) Land cover map around the study region. The red grid boxes denote the urban grids used in this study, while the blue grid boxes represent the rural grids.
(b) Detailed location of urban GOES grids (red) and zip code map of Chicago (black). (c) Boundaries of the urban traffic measurement area.
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2.3. Traffic Data

Figure 1c shows the boundaries of the urban traffic measurement zones derived from the Chicago Traffic Tracker
data set, publicly available via the Chicago Data Portal. These traffic zones are defined at a spatial resolution of
approximately 1–2 km, closely matching the spatial resolution (∼2 km) of the GOES satellite data. Panel (c)
explicitly illustrates the spatial alignment of the traffic speed data with the urban‐rural land‐cover classification
(Figure 1a) and the urban GOES grid cells used for SUHII calculation (Figure 1b). This alignment ensures robust
spatial integration among the traffic congestion, land‐cover classification, and land surface temperature data sets.

The traffic data set itself provides average speed estimates of Chicago Transit Authority (CTA) buses aggregated
every 10 min across the defined traffic zones. Given the extensive coverage of CTA bus routes across Chicago,
bus speeds offer a reasonable proxy for overall traffic congestion: lower bus speeds generally indicate more
congested streets. However, we acknowledge two limitations of this approach. First, streets without bus routes are
not directly captured, which may exclude certain congestion hotspots—though this gap is partly mitigated by
Chicago's dense bus network and grid street layout, where nearby roads typically share similar congestion levels.
Second, the data set only covers the primary operational hours of CTA buses, approximately 6 a.m.–7 p.m., which
limits observations to periods when bus frequency adequately reflects overall traffic conditions. While weekend
data are included, they reflect fewer buses and shorter operating periods, which may not capture all weekend‐
specific congestion patterns. Future analyses integrating CTA bus data with private‐vehicle speeds or GPS‐
based traffic data sets could more comprehensively capture congestion throughout the city.

To align the traffic data temporally and spatially with the GOES satellite observations, we aggregate bus speed
data into hourly intervals and then spatially align them with the GOES grid cells. Specifically, we calculate a
weighted average bus speed for each GOES cell by considering the proportion of each traffic zone falling within
each cell. Both the traffic and GOES LST data sets are restricted to the same analysis period (6 a.m.–7 p.m.) to
maintain consistent comparisons when examining the statistical relationship between traffic congestion and
SUHII.

2.4. Auxiliary Data

We incorporate auxiliary data to refine our understanding of the urban landscape. First, we use NOAA's high‐
resolution regional land cover data set from the Coastal Change Analysis Program (C‐CAP), which identifies
canopy, impervious surfaces, and water bodies at a 1 m resolution using lidar and satellite imagery
(NOAA, 2023). To match with the GOES grid, we aggregate these data by calculating the fraction of canopy
pixels relative to the total number of pixels in each cell, effectively representing the proportion of land covered by
trees.

However, canopy fraction alone captures only the areal extent of tree cover, so we also include a 250 m MODIS‐
based Enhanced Vegetation index (EVI) product (P.‐Y. Chen et al., 2006; Justice et al., 2002; Son et al., 2014),
computing an average EVI value over the study period for each GOES cell. This step captures additional
vegetation characteristics (e.g., density) that may influence the local thermal environment.

Building footprint information is obtained from the Chicago Data Portal, where each polygon indicates a
building's outline and number of floors. This allows us to determine the percentage of each GOES grid cell
occupied by buildings. We also used the road network data set from Chicago Data Portal, which includes the
geometry of roads and their respective lane counts. By summing the lane‐weighted road length within each GOES
cell, we derived an index that reflects both total roadway extent and lane capacity.

3. Methods
3.1. Surface Urban Heat Island Intensity (SUHII)

We calculate the Surface Urban Heat Island Intensity (SUHII) for each urban GOES grid cell (Figure 1b) on an
hourly basis, focusing on the warm season from 2018 to 2024. First, we compute the average rural LST for each
hour by aggregating all rural GOES grid cells identified in previous section. This rural baseline captures the
reference temperature outside the urban region. We then subtract this hourly rural average from the corresponding
hourly LST in each urban grid cell to obtain SUHII (Bechtel et al., 2019; Lee, 2024; Z. Liu et al., 2022; Voogt &
Oke, 2003). Mathematically, this is represented as Equation 1.

Geophysical Research Letters 10.1029/2025GL116651
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SUHII(i, t) = LSTurban(i, t) − LSTrural(t) (1)

In Equation 1, i denote the index of an urban GOES grid cell, and t representing the hourly time step. By
quantifying the temperature difference between urban and rural areas, SUHII provides a clear measure of the
urban heat island's magnitude and variability over time.

3.2. Generalized Additive Models (GAM)

We employ Generalized Additive Models (GAMs) to examine how traffic speed influences SUHII (Hastie, 2017;
Wood, 2017). GAMs are particularly suited for this analysis because they can flexibly capture nonlinear re-
lationships without imposing a strict parametric form. In our setup, we treat SUHII as the response variable and
traffic speed as the primary predictor. Given SUHII's pronounced diurnal cycle (Lai et al., 2018; Lee, 2024; Z. Liu
et al., 2022), we also include hour of day as a predictor to ensure that any estimated effect of traffic speed is
evaluated at comparable times of day. Mathematically, for each grid cell i and time t, we fit the model as in
Equation 2.

SUHIIi(t) = βi + s1 (SPEEDi(t)) + s2(HOD(t)) + εi(t) (2)

The terms s1 and s2 represent smooth functions, specifically implemented as thin‐plate regression splines using
the mgcv package in R (Wood, 2001). SPEEDi(t) represent the average CTA bus speed within the grid cell and
HOD(t) represent the local hour of the day. βi is the intercept and εi(t) is the error term. We set the basis
dimension of k = 8 for each smoother s( · ) , which constrains the maximum possible flexibility of the spline fit.
The smoothness penalties, which prevent excessive spline complexity, were automatically estimated by the GAM
fitting process via Restricted Maximum Likelihood (REML), also implemented directly within the mgcv package.
This procedure ensures an optimal balance between model complexity and generalization. By including hour of
day as a separate smooth term, the partial dependence of traffic speed on SUHII can be interpreted as its effect
independent from the time of day, thereby providing a more accurate assessment of how congestion contributes to
urban heat.

We emphasize that GAM analysis is inherently correlational. While GAMs effectively isolate individual predictor
effects after controlling for other variables, they do not directly imply causation due to their observational nature.
Additional physical or mechanistic modeling would be necessary to confirm direct causal pathways.

3.3. Empirical Orthogonal Functions (EOF)

To address potential collinearity among our five predictors (canopy cover, EVI, building area, road length,
population), we employ Empirical Orthogonal Function (EOF) analysis (Hannachi et al., 2007; K.‐Y. Kim &
North, 1998, 1999; North, 1984). These five factors were chosen based on their established roles in influencing
urban heat island dynamics: vegetation (canopy cover, EVI) affects local cooling via shading and evapotrans-
piration (Melaas et al., 2016; Sekertekin & Zadbagher, 2021), building density and road networks influence heat
retention and emission (Patriota et al., 2024; Xu et al., 2024), and population density serves as a proxy for
anthropogenic heat (Apriana & Syahrani, 2022; S. Peng et al., 2012). Each predictor is stored as a single vector—
one element per grid cell—yielding a data matrix X of size N × V, where N is the number of observation (GOES
grid cell) and V is the number of variables. The EOF decomposition then represents X as a sum of orthogonal
modes:

X =∑
K

k=1
PCk ·EOFk (3)

where EOFk is the kth EOF mode and PCk is its principal component for each of the N grid cells. By design, these
modes are mutually orthogonal, thereby isolating distinct patterns of variability and mitigating the effects of
collinearity among the predictors.

Geophysical Research Letters 10.1029/2025GL116651
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4. Results
4.1. General SUHII and Traffic Speed Patterns

We first examine the spatial distribution of SUHII, as well as its seasonal (monthly) and diurnal cycles
(Figures 2a–2c). Geographically, SUHII is lower on the eastern side of Chicago near Lake Michigan, due to
cooler lake breezes moderating surface temperatures. Our difference‐in‐differences analysis quantitatively
confirmed this cooling effect, showing that lakeshore areas (within ∼4 km of Lake Michigan) are significantly
cooler by approximately 0.7°C (p = 0.0005) compared to inland grid cells, consistent with previous studies
documenting lake breeze effects on urban heat islands (Lee & Berkelhammer, 2024). Monthly patterns show a
lower SUHII in May and a peak in August, which typical for cities surrounded by intensive agricultural. In spring,
when croplands lie fallow, rural areas can exhibit higher land surface temperatures, reducing the contrast with
urban zones (Lee, 2024; Wang et al., 2018; Wickham et al., 2012).

Diurnally, SUHII peaks at midday under maximum solar radiation and shows a secondary increase before sunrise
(around 6 a.m.) due to residual heat released from urban surfaces overnight. Weekdays exhibit a higher afternoon
SUHII than weekends, likely reflecting intensified anthropogenic activities such as traffic and building operations
throughout the city. This weekend effect is consistent across the entire study region, with all grid cells showing
higher SUHII on weekdays. Spatial correlation between the weekend effect (Figure 2d) and the average SUHII
(Figure 2a) is weak (R = 0.2), suggesting different underlying mechanisms for these two metrics. Notably,

Figure 2. (a) Spatial pattern of average SUHII over Chicago region. (b) Monthly averaged SUHII. (c) Diurnal cycle of SUHII from 6 a.m. to 7 p.m. (d) Spatial
distribution of average weekend effect (weekend–weekday) of SUHII over study region. (e–h) Same as (a–d), but for traffic speed, rather than SUHII.
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weekend SUHII can be lower in certain neighborhoods due to a reduction in both traffic and building operations,
and cells adjacent to Lake Michigan consistently remain cooler—presumably due to the onshore breeze—while
downtown areas exhibit higher baseline anthropogenic heat.

Examining the traffic speed data (Figures 2e–2h) reveals a consistent pattern of lower speeds in the urban core and
higher speeds on the outskirts. Temporally, speeds remain relatively stable from month to month but show a
pronounced diurnal cycle, dropping sharply around 8 a.m. and 4 p.m. on weekdays due to commuter rush hours.
This pattern is largely absent on weekends, when typical commuting routines do not apply. The presence of these
varying traffic cycles is beneficial for our regression model, as it provides the temporal diversity needed to isolate
and quantify the effect of traffic speed on SUHII.

The spatial weekend effect of traffic speed (Figure 2h) is most prevalent near downtown Chicago and is correlated
with average speed (R = − 0.47, p = 1 × 10− 5), total road length (R = 0.49, p = 9 × 10− 6), and building area
fraction (R = 0.48, p = 9 × 10− 6). These findings indicate that weekend traffic speed differences are most
pronounced in areas with extensive road infrastructure, dense building coverage, and already slower baseline
traffic. Comparing the weekend effect on SUHII and on traffic speed yields no significant statistical relationship,
implying that factors beyond traffic dynamics contribute to SUHII's weekend effect.

4.2. Impact of Traffic Speed on SUHII

We apply a GAM regression model to each GOES grid cell within the urban region, using SUHII as the response
variable and hour of day plus traffic speed as predictors. For each pixel, we derive partial dependence functions
from the fitted models, then average them across all pixels to illustrate the effects of hour of day and traffic speed
(Figure 3). The hour‐of‐day effect shown in Figure 3a represents the isolated contribution of diurnal timing after
statistically controlling for traffic speed within the GAM. Thus, Figure 3a specifically illustrates the GAM‐
derived isolated diurnal signal, rather than the raw observed diurnal variation itself, reflecting the effective-
ness of the GAM approach in separating temporal effects from other influences. Examining traffic speed, we
observe a statistically significant negative correlation with SUHII (urban‐rural temperature difference), meaning
higher speeds are associated with smaller differences between urban and rural temperatures, whereas lower
speeds (congestion) correlate with larger temperature differences. Specifically, a 10 mph decrease in traffic speed
is associated with a 0.36°C increase in SUHII.

Importantly, this relationship is observational and associative rather than causal, as other urban characteristics,
such as construction or waste heat, are not included in the model which might also influence this correlation. The
relatively narrow range of the traffic‐speed partial dependence plot (Figure 3b) compared to dependence of
diurnal cycle (Figure 3a) arises precisely because our GAM explicitly isolates the traffic effect from the dominant
diurnal variation. Thus, the magnitude shown represents the specific incremental association of traffic speed with
SUHII, independent of the much larger diurnal variability captured separately by the hour‐of‐day term. Within the
typical speed range of 20–50 mph in Chicago, this can amount to a 1.1°C difference. Given that the average

Figure 3. (a) Partial dependence function of hour of the day on SUHII. Red line denotes the effect averaged over all grid points, while the grey area represents the spread
between different grid points (Q1–Q3). (b) Same as (a), but for the traffic speed.
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SUHII is around 1.8°C, this suggests that variations in traffic speed can significantly influence Chicago's overall
urban heat island intensity.

4.3. Factors Influencing Traffic's Effect on SUHII

Although the citywide average suggests a 0.36°C rise of SUHII is associated with 10 mph reduction in traffic
speed, the actual effect varies notably across Chicago. Figure 4a maps the local slope of this relationship for each
2 km grid cell, revealing that while most cells have a negative slope (indicating SUHII increases when traffic
slows), roughly 14% show weaker or even positive slopes—evidence that the congestion‐driven heat signal is far
from uniform. These spatial discrepancies likely reflect variations in land‐surface characteristics and other
anthropogenic heat sources that can either amplify or suppress traffic‐induced warming.

To understand these differences, we examined five potential explanatory factors: canopy cover, EVI, building
area, road length, and population. Because these variables can be strongly interrelated (e.g., dense building
footprints often coincide with fewer trees), we used Empirical Orthogonal Function (EOF) analysis. Of the five
EOF modes produced, EOF Mode 1 and EOF Mode 5 correlate strongly with the slope shown in Figure 4a,
whereas Modes 2–4 do not and are therefore excluded from further discussion.

EOF Mode 1 (Figure 4b) accounts for 58.2% of the total variance in canopy cover, EVI, building area, road length,
and population. Here, canopy cover and EVI both loads negatively, meaning that areas with limited vegetation
load positively on the corresponding principal component (PC Mode 1, Figure 4c). A positive correlation between
PC Mode 1 and the slope (Figure 4d) indicates that neighborhoods with higher vegetation see a stronger SUHII
response when traffic slows, due to lower baseline anthropogenic heat emissions making traffic‐related heat more
distinguishable. Conversely, areas with lower canopy and EVI (more built areas) exhibit more moderate slopes.
This is because in denser built‐up areas, the presence of additional heat sources (e.g., waste heat from air‐con-
ditioning) may overshadow traffic's influence, reducing the observed coupling between congestion and SUHII.

EOF Mode 5 (Figure 4e), which explains 1.6% of the variance, captures a less common pattern featuring relatively
high canopy cover but low EVI. Although canopy cover and EVI are strongly correlated overall (R = 0.85), this

Figure 4. (a) Spatial distribution of the slope (°C per mph) describing how traffic speed affects SUHII; negative values indicate increased SUHII when traffic slows.
(b) Loadings of EOF Mode 1 (58.2% of variance). (c) Principal component (PC) values for Mode 1, and (d) correlation of PC Mode 1 versus slope (red line shows linear
fit and ±1 std). (e) Loadings of EOF Mode 5 (1.6% of variance), (f) corresponding PC Mode 5 map, and (g) PC versus slope correlation plot.
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small fraction of variance highlights places where the two metrics diverge. The corresponding principal
component map (Figure 4f) again correlates positively with the slope (Figure 4g), suggesting that tree cover (as
opposed to overall EVI or “greenness”) can mitigate the localized impact of congestion‐related heat. Because
Mode 5 describes under 2% of total variance, it applies to only a small subset of urban conditions—but still
underscores how different vegetation types can confer resilience.

Our additional spatial difference analysis, which compared grid cells categorized based on the 25th and 75th
percentiles of urban characteristics, provides further quantitative support for the EOF‐based results. Specifically,
grid cells with high canopy cover were significantly cooler (0.65°C; p= 0.0004). Conversely, grid cells with high
population density were significantly warmer (0.5°C; p = 0.009), while high building‐density areas showed
marginally higher temperatures (0.34°C; p = 0.08). These results numerically reinforce the importance of
vegetation cover, high population and building densities in modeling urban heat. Nevertheless, there are limi-
tations due to collinearity among these urban characteristics, complicating the precise attribution of temperature
differences. In this context, the EOF analysis remains especially valuable, as it explicitly addresses collinearity by
identifying distinct modes of variability across multiple correlated urban factors.

5. Summary and Discussion
This study analyzed land surface temperature (LST) data from GOES satellites to calculate the surface urban heat
island intensity (SUHII) over urban areas of Chicago. By integrating traffic speed information derived from CTA
buses, we explored how changes in traffic speed (or congestion) affect local SUHII. There are three main findings
from this work:

• SUHII and traffic speed have distinct diurnal cycles and weekday/weekend patterns. SUHII peaks around
noon, while congestion peaks during rush hours. These differences establish the statistical framework to
isolate the congestion influence on SUHI.

• Using GAM analysis, we found that slower traffic speeds (indicative of congestion) are statistically associated
with increased local SUHII. This result underscores an observational correlation rather than direct causation.

• Looking at local characteristics of the impact of traffic in local SUHII, we found that this link is more pro-
nounced in high‐vegetation (both canopy cover and EVI) and low‐built up areas (including buildings, roads,
and population). This is because in these regions, traffic is the dominant waste heat source that can impact
SUHII, whereas other sources heat (e.g., waste heat from A/C) are more pronounced in densely built areas.

These findings highlight the connections among urban design, vegetation, human activity, and localized heat
patterns, demonstrating that traffic congestion can significantly influence the microclimate in addition to well‐
studied factors like impervious surfaces and building density.

From a mechanistic perspective, the observed association between traffic congestion and increased SUHII can be
explained by the direct emission of anthropogenic heat from vehicles. Traffic‐related heat emissions, generated by
engine combustion, exhaust, and frictional heating, directly warm the near‐surface air and subsequently influence
surface temperatures through air‐surface heat exchange processes (Fujimoto et al., 2012; Zhu et al., 2017). Under
the constraint of surface energy balance, these emissions manifest as measurable increases in surface tempera-
tures, detectable via satellite remote sensing (Sailor, 2011; Z. Yu et al., 2021). Congested conditions amplify these
emissions by increasing vehicle density and altering driving behaviors such as frequent acceleration and braking,
which produce additional heat per unit road length. Consequently, traffic‐induced heat represents a significant and
distinct component of urban anthropogenic heating, warranting targeted attention in urban heat mitigation stra-
tegies (Husni et al., 2022; Shahmohamadi et al., 2011).

From an environmental science standpoint, recognizing traffic as a distinct heat source adds novelty to traditional
SUHI analyses, which often focus on broad land‐use characteristics or the role of evapotranspiration. The ca-
pacity of traffic to create localized “hot spots” underscores the need for high‐resolution data such that citywide
averages may overlook areas where congestion consistently elevates temperatures beyond typical urban levels.
Such granular insights can inform innovative mitigation measures, such as establishing green corridors along
busy routes or fine‐tuning transit operations in especially vulnerable neighborhoods.

Beyond purely environmental implications, this work also suggests valuable opportunities for data‐driven urban
planning. In cities like Chicago, urban planners and other decisionmakers can use traffic‐speed data to map
communities at higher risk of both thermal stress and air pollution. Implementing strategies to reduce traffic,
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adding shade trees or vegetated buffers, and promoting alternative transportation options could alleviate multiple
stressors simultaneously. An illustrative example includes shipping and distribution hubs with high truck traffic,
where congestion‐related emissions can compound local heat and air‐quality issues. Moreover, pinpointing where
heavy traffic aligns with inadequate green cover allows decisionmakers to target interventions for populations that
stand to benefit most.

In conclusion, this work demonstrates that traffic congestion can be a significant, albeit context‐dependent,
contributor to the urban heat island effect. While it does not diminish the importance of broader land‐use patterns
or building design, it highlights the need to factor traffic conditions into local climate strategies. By integrating
high‐resolution traffic data with satellite‐derived LST measurements, researchers and policymakers can gain a
more detailed understanding of how transportation systems interact with the built environment—and more
importantly, use this knowledge to guide interventions that balance both mobility and climate resilience goals.
Ultimately, integrating traffic data into urban heat research offers a promising pathway toward more adaptive and
cooler city planning. While our focus is on Chicago, the methods presented here can be applied to other
metropolitan areas with publicly available traffic data and frequent satellite coverage. The magnitude of
congestion‐related warming may vary by local climate, building density, and land‐use practices.

This study is not without limitations. The analysis relies on CTA bus speeds as a proxy for traffic congestion,
which, while useful, may not fully capture traffic dynamics on highways, suburban arterials, or roads without bus
routes. Future work could incorporate more comprehensive congestion datasets—potentially from GPS‐equipped
vehicles or mobile navigation apps—to provide broader spatial coverage and finer granularity. Another limitation
lies in the identification of factors influencing the coupling between traffic speed and SUHII. While vegetation
and built area emerged as significant predictors, other variables (e.g., detailed waste‐heat emissions, industrial
activities, or localized socioeconomic indicators) may also play important roles but remain challenging to
quantify. Further research employing direct physical measurements or causal inference modeling would be
necessary to establish whether direct causal pathways exist between traffic congestion (or other factors) and
increases in urban heat island intensity. Furthermore, this study used land surface temperatures (LST) rather than
near‐surface air temperatures to illustrate the effects of congestion. Although LST offers valuable high‐resolution
insights, vehicle‐related heat emissions can have a more direct influence on air temperature at pedestrian level.
Acquiring high‐resolution air temperature measurements—or effectively modeling them—would likely refine
our understanding of traffic's effect on local heat conditions. Lastly, this analysis focuses exclusively on Chicago,
a major metropolitan area located in the Midwestern United States. Although we have examined the relationship
between SUHI and traffic congestion using bus speed as a proxy, this approach may not directly translate to other
cities due to variations in road networks, infrastructure, or urban form. Additionally, the impact of traffic speed on
SUHI may differ significantly across other cities in the U.S. or globally. Therefore, expanding this analysis to
include additional cities would provide valuable insights and improve the generalizability of our findings.
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GOES‐16, 17 and 18 data can be found in Amazon Web Service (AWS) repository: https://noaa-goes16.s3.
amazonaws.com/index.html, https://noaa-goes17.s3.amazonaws.com/index.html, https://noaa-goes18.s3.ama-
zonaws.com/index.html. Chicago traffic speed data can be downloaded at Chicago Data Portal: https://data.
cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Congestion-Estimates-by-Re/t2qc-9pjd/about_data.
Chicago building footprint data can also be downloaded at Chicago Data Portal: https://data.cityofchicago.org/
Buildings/Building-Footprints-current-/hz9b-7nh8. The road network of Chicago can be downloaded from
Chicago Data Portal: https://data.cityofchicago.org/Transportation/Street-Center-Lines/6imu-meau. NOAA C‐
CAP data for canopy, impervious, and water land cover can be downloaded from C‐CAP website (www.coast.
noaa.gov/htdata/raster1/landcover/bulkdownload/hires/) (NOAA, 2023). MODIS EVI data can be download
from Google Earth Engine (https://developers.google.com/earth-engine/datasets/catalog/MODIS_MOD09GA_
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