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Abstract Urban heat stress is a critical issue, particularly in cities where dense infrastructure and limited
green space exacerbate temperature extremes. This study investigates the impact of greenery (EVI2), canopy
cover (CC), impervious cover (IC), and water bodies on heat index in Chicago using high‐resolution data from
the Heat Watch campaign. We find that EVI2, CC and proximity to water body significantly reduce heat while
IC increases heat, particularly in the afternoon when solar radiation is intense. Additionally, the effective radius
that land cover impacts heat is smaller in the afternoon. The combined effect analysis indicates that enhancing
total greenness, not just canopy cover, is the most effective strategy to reduce heat. This study underscores the
importance of strategic vegetation management, highlighting the critical role of integrated approaches in
reducing urban heat.

Plain Language Summary This study looks at how greenery, tree canopy cover, impervious
surfaces (like concrete), and water bodies affect air temperature in Chicago. Using detailed air temperature data
from the Heat Watch campaign, we found that vegetation and proximity to water significantly reduce
temperatures, while impervious surfaces increase temperatures, especially in the afternoon when the sun is
strongest. The influence of these factors on temperature is more localized in the afternoon. Our analysis shows
that increasing overall greenery, not just tree canopy cover, is the most effective way to reduce heat. This study
highlights the importance of strategic vegetation management and integrated approaches to effectively reduce
urban heat.

1. Introduction
Urban areas worldwide are experiencing rapid growth, leading to increased concerns regarding the urban heat
island (UHI) effect, where urban temperatures are significantly higher than those in surrounding rural areas (Kim
& Brown, 2021; Rizwan et al., 2008; Tzavali et al., 2015). This phenomenon is primarily driven by the
replacement of natural vegetation with impervious surfaces, which absorb and retain heat. Climate change ex-
acerbates this issue by increasing the frequency and intensity of heatwaves in the urban settings (Chapman
et al., 2017; Parker, 2010; Sachindra et al., 2016). With over 80% of the US population living in the urban areas,
elevated temperatures can adversely affect human health (Bell et al., 2018; Ebi et al., 2021; Lee & Dessler, 2023;
Vaidyanathan et al., 2019), increase energy consumption (Dirks et al., 2015; Lee & Dessler, 2022; Morakinyo
et al., 2019), and reduce overall urban sustainability (Mauree et al., 2019; Santamouris et al., 2020). Therefore,
understanding the factors that influence urban heat and developing effective mitigation strategies are critical for
improving the livability of the cities.

Previous studies have used both modeling and observational approaches to explore the efficacy of various
strategies to cool urban environments, including increasing urban greenery through parks, green roofs, and street
trees (Balany et al., 2020; Li et al., 2014; Marando et al., 2022). Additionally, the use of urban water bodies
(Ghosh & Das, 2018; Steeneveld et al., 2014), such as fountains, and the application of reflective and high‐albedo
materials (Santamouris & Yun, 2020; Yang et al., 2015) have been investigated. Greenness and canopy cover, in
particular, is widely considered effective due to its ability to decrease temperatures and its additional positive
effects on human health and well‐being. Though these are offset by increases in pollen and reductions in air
quality, in some cases (Lovasi et al., 2013; Roman et al., 2021).

Urban greenery plays a crucial role in mitigating urban heat through mechanisms such as increases in evapo-
transpiration and the reduction of heat absorption by impervious surfaces. Metrics for greenery, such as the
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Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), have been widely
used to quantify the coverage and health of vegetation in urban areas (Chun & Guldmann, 2018; Marando
et al., 2019). Furthermore, factors such as canopy cover (Chen et al., 2020; Tamaskani Esfehankalateh et al., 2021;
Ziter et al., 2019) and impervious surface cover (Morabito et al., 2021; Yuan & Bauer, 2007) have been
investigated as significant contributors to urban heat.

Canopy cover, a subset of urban greenery, specifically refers to the layer of leaves, branches, and stems of trees
that provide direct shading and reduce solar radiation reaching the surface. However, it can also increase
downward solar radiation with a decrease in albedo. On the other hand, urban greenery encompasses all types of
vegetation, including grass, shrubs, and ground cover, which contribute to cooling through mechanisms like
evapotranspiration and heat absorption reduction. Impervious surface cover tends to increase temperatures due to
its high heat absorption and retention capabilities. However, there are uncertainties, particularly regarding the
interactions between green and impervious spaces and how these effects vary with time of day. Diurnal variation
is important, as the underlying mechanisms of daytime and nighttime heat variation differ (Logan et al., 2020;
Shiflett et al., 2017), as do their impacts on human health (Davis et al., 2020; Martinez‐Nicolas et al., 2014).
Therefore, understanding the effects and interactions of vegetation indices, canopy cover, and impervious cover at
different times of the day is essential for designing effective urban heat mitigation strategies (Erell & Zhou, 2022;
Hu & Li, 2020; Huang et al., 2008).

Quantifying the impact of these variables on urban heat requires high‐resolution data, which is often difficult to
obtain. Land surface temperature (LST) measurements from satellites such as MODIS (Crosson et al., 2012;
Mukherjee et al., 2017), Landsat (Cilek & Cilek, 2021; Yang et al., 2020), or ECOSTRESS (Hulley et al., 2019;
Shi et al., 2022) have been extensively utilized for urban temperature analysis. However, these measurements are
limited because they do not directly measure air temperature, which is the property that has a more direct impact
on human comfort and health. Additionally, LST measurements do not account for cooling through advection,
making it challenging to estimate the spatial scale and aggregated effects of cooling associated with different land
covers. Lastly, satellite measurements have limitations in measuring surface humidity, which is another important
factor to consider as a heat metric because it significantly impacts human health (Heo et al., 2019; Lu &
Romps, 2023; Wehner et al., 2017). This is more important as humidity is understudied in most cities, whereas air
temperature has been variable of interest in cities with denser measurement networks, such as Chicago (Li &
Sharma, 2024b).

With these limitations on measurement techniques, vehicle measurement campaigns are commonly used to
provide spatially extensive data in the absence of dense meteorological networks that are difficult to maintain in
cities (Alonzo et al., 2021; Ziter et al., 2019). In this study, we leverage data from the Heat Watch campaign
conducted in Chicago. This campaign provides high‐resolution temperature and humidity data, which, when
combined with satellite and land cover products, allows us to effectively quantify the role of greenery and land
cover in the urban microclimate. This integrated approach helps us better understand the spatial and temporal
dynamics of urban heat, providing valuable insights for urban heat mitigation strategies.

This study aims to address three critical questions for effectively utilizing greening to mitigate urban heat: the
individual effect of greenness at different times of the day, the most effective buffer size for cooling, and the
interactions between EVI2, canopy cover, and impervious cover. Understanding diurnal variations is crucial, as
the impact of vegetation differs between morning and afternoon due to changes in solar radiation and atmospheric
conditions. Additionally, determining the optimal buffer sizes is important, as different elements of urban
landscapes, such as parks, tree‐lined streets, and large water bodies, have varying spatial influences on tem-
perature. Lastly, understanding how EVI2, canopy cover, and impervious cover interact is vital for developing
targeted interventions, as these interactions can inform more nuanced and effective urban planning decisions.

2. Data
2.1. Heat Watch Data

Air temperature and humidity data for this study were obtained from the Heat Watch campaign in Chicago
(CAPA/NIHHIS, 2023), part of the NOAA Urban Heat Island Mapping Campaign initiated in 2017. To measure
air temperature and humidity, 100 volunteers navigated the city of Chicago with homogeneous measurement
sensors mounted in their vehicles on 28 July 2023. The daily average temperature measured at O’Hare Airport in
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Chicago during the 2023 summer months (June, July, and August) is 23.1°C, while the temperature on July 28 was
28.9°C. This indicates that the chosen day was a hotter than an average day in the Chicago summer but was not
classified as a heat wave event. Data collection occurred during three distinct time windows on this day: early
morning between 06:00 and 07:00 (AM), afternoon from 15:00 to 16:00 (AF), and evening from 19:00 to 20:00
(PM). A total of 139,443 air temperature (T ) and relative humidity (RH) measurements were recorded from this
campaign. Sunrise was at 5:40 a.m. and the sunset was at 8:13 p.m. local time at that day. Thus, AM and PM
dataset are representative of time right before the sunrise and right before the sunset.

From the measured T and RH, we calculate heat index (HI), a metric that quantifies the perceived temperature by
combining the effects of both temperature and humidity on human comfort (Rothfusz, 1990). The graphic of the
measuring route and HI are shown in Figure 1. According to NOAA, generally a heat index above 80, 90, 105, and
125°F indicates caution, extreme caution, danger, and extreme danger, respectively. Formula that are used to
calculate the heat index is shown in Supporting Information S1 Section S1. A description of T and specific
humidity (SH), which is calculated from T and RH, can also be found in Supporting Information S1 Section S1.

2.2. Urban Land Cover Data

For the metric of greenery, we utilize satellite measurements from the PlanetScope constellation, operated by
Planet Labs Inc. This constellation comprises over 180 CubeSats in sun‐synchronous orbits, capturing multi-
spectral imagery with a spatial resolution ranging from 3.7 to 4.1 m, depending on altitude. The PlanetScope
instrument measures eight spectral bands: Coastal Blue (central wavelength: 443 nm), Blue (490 nm), Green 1
(531 nm), Green (565 nm), Yellow (610 nm), Red (665 nm), Red Edge (705 nm), and Near‐Infrared (NIR,
865 nm). From these bands, we calculate the Enhanced Vegetation Index 2 (EVI2) as shown in Equation 1.

EVI2 = 2.5 ×
(NIR − RED)

NIR + (2.4 × RED) + 1
(1)

EVI2 is selected for its superior representation of densely vegetated areas compared to other indices like the
Normalized Difference Vegetation Index (NDVI). It offers advantages due to its heightened sensitivity to vari-
ations in canopy structure, including leaf area index, canopy type, and architecture—factors crucial for under-
standing the cooling effects of urban vegetation. In this study, we also evaluated other vegetation indices such as
NDVI and the original EVI. However, we find that these alternatives do not significantly alter the overall findings.
We use PlanetScope data from July 21 to 4 August 2023, a 2 week period that aligns with the Heat Watch
campaign. Using median values for the entire summer of that year did not make a significant change in the
conclusion of this study.

Figure 1. Heat index (HI) variations and measurement routes across Chicago at different times of the day. (a) AM HI (06:00–07:00), (b) AF HI (15:00–16:00), and
(c) PM HI (19:00–20:00). The color gradients represent HI ranges.
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One‐meter resolution canopy cover and impervious land cover data were obtained from the NOAA Coastal
Change Analysis Program (C‐CAP) for the year 2021. This dataset includes three binary layers: canopy cover,
impervious land cover, and water body. It is important to note the distinction between EVI2 and canopy cover.
While both can serve as metrics of vegetation, EVI2 measures the greenness and density of vegetation, whereas
canopy cover specifically represents the proportion of land area covered by the canopy of trees and other
vegetation. Thus, a prairie or field might have a high greenness score, but low canopy cover and unhealthy trees
might have high canopy cover but low greenness. Furthermore, we include impervious surface in our analysis
because it significantly affects urban heat dynamics by heat retention and increasing surface temperatures.

We have three data sets: EVI2 (3 m resolution), canopy cover (1 m resolution), and impervious cover (1 m
resolution), for the entire Chicago region. Subset of this data are shown in Figure 2 for the example in the
Humboldt Park community area in Chicago. For each of the 139,443 measurements of Heat Watch data, we
calculate the average EVI2 value, fraction of canopy cover (CC), and fraction of impervious cover (IC) within a
given buffer around each measurement point. The radiuses of these buffers are: 10, 25, 50, 75, 100, 125, 150, 200,
250, 300, 350, 400, 450, and 500 m (14 cases in total). This allows us to examine the extent of each land cover's
effects on local heat index, similar to previous studies (Alonzo et al., 2021; Ziter et al., 2019).

Lastly, we consider distance to water body (DW). We account only for significant water bodies larger than
1,000 m2 to minimize the effect of small water bodies that might not be significant (e.g., small fountains). For
each measurement point, we calculate the distance to the closest significant water body and add this as a predictor
variable. Significant water bodies are very close to Lake Michigan on the eastern side of Chicago, so DW can be
approximated to the distance to Lake Michigan in this study.

3. Method of Analysis
In this study, we use the Generalized Additive Model (GAM) as the main statistical method. GAM is particularly
effective for analyzing the curvature and non‐linear effects of each predictor variable since it allows for the
inclusion of smooth functions to model relationships that are not strictly linear. This flexibility enables us to
capture complex patterns in the data, enhancing the accuracy of our analysis regarding urban heat dynamics. We
set up our model as follows:

HIt,b ≈ GAMt,b (s(DW) + s(EVI2b) + s(CCb) + s(ICb) + te(EVI2b, CCb, ICb)) (2)

where HIt,b represents the heat index at a specific time of day t (AM, AF, and PM) and within a buffer radius b (14
values ranging from 10 to 500 m). Thus, there are 52 (3×14) GAMs built for each time of the day and buffer sizes.
Each s () term represents a spline term, a smooth function constituting four three‐order polynomial curves,
capturing the individual effects of each predictor variable: DW, EVI2, CC, and IC. The te () term represents the
tensor product, which is an interaction term between EVI2, CC and IC, accounting for their combined effect. This
model setup is similar to previous studies that utilize multiple predictors for urban air temperature and heat
analysis (Alonzo et al., 2021; Johnson et al., 2020; Trlica et al., 2017; Zhang et al., 2024; Ziter et al., 2019). For

Figure 2. Spatial representation of environmental variables in Humboldt Park. (a) Enhanced Vegetation Index 2 (EVI2), indicating greenery, (b) Canopy Cover, showing
the extent of tree cover (binary values), and (c) Impervious Cover, illustrating the extent of non‐permeable surfaces (binary values). The yellow line represents the
temperature measurement route.

Geophysical Research Letters 10.1029/2024GL110847

LEE AND BERKELHAMMER 4 of 11

 19448007, 2024, 21, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
110847 by Jangho L

ee - N
ew

 Y
ork U

niversity , W
iley O

nline L
ibrary on [18/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



each term, we calculate the partial dependence to quantify the effect of each variable by fixing all other terms
while changing the term of interest. For AM, AF, and PM, there are 38,518, 47,541, and 49,400 measurement
samples, respectively, used to build the GAMs.

4. Results
4.1. Individual Effects

First, we examine the individual effect of EVI2 on HI, as shown in Figure 3. We also conducted a similar analysis
on T and SH individually, rather than on the HI, to determine the contribution of each factor to HI. Overall, we
found that HI is predominantly influenced by T rather than SH. Detailed analyses of T and SH are provided in
Supporting Information S1 Section S2. Furthermore, analysis regarding multicollinearity between the predictor
variables are discussed in Supporting Information S1 Section S3.

Analyzing the effect of EVI2 on micro‐scale HI (Figures 3a–3c), the effect is most significant in the AF, followed
by PM and AM. This is because higher solar radiation during the AF period enhances the cooling effect of
greenery due to increased evapotranspiration rates. The most significant buffer size of EVI2 contributing to HI is
10 m in the AM and AF, and 25 m in the PM. This indicates that smaller vegetation patches have a more localized
cooling effect during periods of intense solar radiation, while in the evening, larger areas of vegetation are more
effective at reducing heat index due to the accumulated cooling effect over a broader area. Additionally, non‐
linearity is observed, especially in the AF, as the buffer size increases beyond 300 m. This indicates the
absence of a clear large‐scale effect of EVI2, particularly for lower EVI2 values (under 0.2), in the AF when solar
radiation is high and the direct cooling effect of EVI2 is more relevant.

CC exhibits a similar pattern to EVI2 as in previous studies (Alonzo et al., 2021; Ziter et al., 2019), as depicted in
Figures 3d–3f. However, a notable difference is observed in the most effective buffer size. While EVI2 had a more
localized effect with 10 and 25 m buffer, CC shows the most effective buffer size at 100 and 125 m throughout the
day. This suggests that canopy cover has a broader spatial influence compared to the greenness index. This could
be related to the fact that the trees in Chicago are quite large—so the canopy cover increases surface frication and
boundary layer dynamics leading to larger spatial scale of impact (Li & Sharma, 2024a). This highlights the
importance of widespread tree cover in urban areas for effective cooling. Furthermore, non‐linearity is significant
feature of the cooling effect from CC. The results show that increasing CC from about 0.25 to 0.5 is most effective
for cooling, as the slope of the curve is steepest. This suggests an optimal range for canopy density. Increasing CC
in regions with too little or too much canopy cover does not yield significant cooling benefits.

Next, we examine the impact of IC. The effect of IC is most prominent in the PM, followed by AF and AM. After
sunset, the main driver of nighttime heat index variation is the heat retained by these impervious surfaces,
resulting in a larger effective radius of influence (400 m), compared to AF, when the driver is direct solar radiation
(10 m). Furthermore, the effect of IC is generally linear in AM and PM but exhibits a non‐linear relationship in AF
for larger buffers. This non‐linearity is likely due to the localized nature of the heating effect during periods of
high solar radiation. In the AF, impervious surfaces quickly absorb and re‐radiate heat, leading to steep heat index
increases over smaller areas. As the buffer size increases, the effect of impervious surfaces starts to level off,
showing diminishing effect on HI for larger areas.

Finally, we consider the effect of DW on HI, as shown in Figure 3j. The cooling effect of proximity to water is
evident, with the most significant impact observed in the AF, followed by PM, and a negligible effect in AM. In
the afternoon, high solar radiation increases the temperature contrast between heat‐absorbing land surfaces and
heat‐moderating water bodies, leading to significant cooling effects in areas near water. In the evening, as land
surfaces begin to cool, the temperature of water bodies does not cool as much due to their high heat capacity. This
reduces the cooling effect of DW on HI, as the thermal gradient between land and water decreases. In the morning,
the effect of proximity to water on temperature is minimal. By this time, the thermal gradient between water
bodies and land have evened out, resulting in a reduced cooling influence from the water. Humidity declines as
DW increases, but the contribution of humidity to the HI is not substantial enough to offset the effect of T.

The choice of heat index can potentially affect the compensatory impact of humidity on urban heat stress
(Chakraborty et al., 2022). To explore this, we tested various heat stress indices, including the wet‐bulb tem-
perature, which serves as a measure of how effectively humans can cool down through sweating (Sherwood &
Huber, 2010). Our findings did not show a significant change in conclusions regardless of the index used. The
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results using the wet‐bulb temperature, instead of the heat index (HI) employed in this study, are provided in
Supporting Information S1 Section S2.

4.2. Combined Effect

Although EVI2, CC, and IC all have individual effects, it is important to examine the interaction between these
datasets. For instance, will increasing CC in regions with high EVI2 have the same effect as in regions with low

Figure 3. The relative effects of EVI2, Canopy Cover, Impervious Cover, and Distance to Water on het index (HI) across
different times of the day. (a–c) EVI2 effects in AM, AF, and PM. The color‐coded lines represent different buffer sizes
ranging from 10 to 500 m (d–f) same as (a–c), but for Canopy Cover. (g–i) Same as (a–c) bur for Impervious Cover.
(j) Distance to Water effects in AM (blue), AF (red), and PM (green).

Geophysical Research Letters 10.1029/2024GL110847
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EVI2? Will these effects be consistent across different levels of IC? To address these questions, we analyze the
interaction term in Equation 2. In Figure 4, we visualize the interaction term between EVI, CC and IC at a buffer
size of 100 m (b = 100). To effectively illustrate this, we categorize IC into three bins: low (25th percentile),
middle (50th percentile), and high (75th percentile). Each bin spans 10 percentile points, averaging dependencies
within these ranges (e.g., 20th–30th percentile). For each low, middle, and high IC bin, we visualize the inter-
action term between EVI2 and CC. The heatmaps in Figures 4a–4i display the combined effect of EVI2 and CC on
HI change across different times of the day (AM, AF, PM) and IC levels. Note that the combination of variables
outside the observation range is masked out in the figure. Furthermore, interaction terms across different buffer
sizes were tested, but the overall conclusions remain consistent (Supporting Information S1 Section S4).

Figure 4. Interaction effects of Enhanced Vegetation Index 2 (EVI2) and Canopy Cover (CC) on heat index change (HI
Change) across different times of the day and levels of Impervious Cover (IC). (a–c) Morning (AM) effects at low, mid, and
high IC levels respectively. (d–f) Same as (a–c), bur for afternoon (AF) effects. (g–i) Same as (a–c) bur for evening (PM)
effects. The color gradients represent heat index changes, with lower heat index shown in blue and higher heat index shown
in red.

Geophysical Research Letters 10.1029/2024GL110847
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Overall, the combined effect of EVI2, CC, and IC is most pronounced in the AF, followed by PM and AM. In the
AM (Figures 4a–4c), the combined effect is less than 0.1°F and shows a similar magnitude and pattern across all
IC levels. We find that at all EVI2 levels, increasing CC further decreases HI with its combined effect.
Conversely, at low CC levels, increasing EVI2 (such as lawns) appears to increase HI. However, this should not
be interpreted as EVI2 having a heating effect. As shown in Figure 3, increasing EVI2 individually has a cooling
effect with a higher magnitude. Therefore, the observed increase in HI with low CC levels and increased EVI2
should be understood as a less effective cooling effect rather than an actual heating effect.

In the AF with low IC (Figures 4d–4f), the pattern is similar to AM, but with a higher magnitude. However, in the
medium and high IC (Figures 4e and 4f), increasing EVI2 shows a decreasing effect on HI across all CC levels,
unlike in the low IC (Figure 4d). This indicates that increasing greenness is particularly effective for cooling in
afternoon, for medium to higher levels of impervious surfaces. Furthermore, significant cooling effect by CC in all
levels of EVI2 indicate that shading can be the most significant mechanism during AF, under direct solar radiation.

In the PM (Figures 4g–4i), it is notable that EVI2 has a suppressing effect on HI cooling at low CC levels, and CC
also has a suppressing effect on HI cooling at low EVI2 levels. This suggests that, for effective cooling during the
evening, both high EVI2 and high CC are necessary. The combined presence of EVI2 and CC maximizes the
cooling effect by enhancing evapotranspiration and increasing the roughness of the surface (i.e., more mixing),
which reduces heat retention in the urban environment.

5. Implications and Conclusions
This study explores the individual and combined effects of Enhanced Vegetation Index 2 (EVI2), Canopy Cover
(CC), Impervious Cover (IC), and Distance to Water (DW) on urban heat index (HI) at different times of the day
and different buffer sizes. From these findings, we can derive the way land surface cover influences effective
urban heat mitigation strategies in Chicago for different periods of the day.

5.1. Cooling Morning Heat (AM HI)

For the cooling of AM HI, EVI2 is effective on a very local scale (10 m buffer), and it is most beneficial to
increase EVI2 in areas where EVI2 is low, rather than in high EVI2 regions. CC and IC are important in larger
buffers (125 and 200 m). The effect of CC is nearly linear in the AM, indicating that increasing CC will have a
consistent cooling effect around that region. However, the effect of IC is non‐linear, making it particularly crucial
to mitigate increases of IC in already high IC regions. To maximize the cooling effect through the combined
effects, it is important to increase both EVI2 and CC simultaneously. We find that focusing on increasing EVI2
only in low CC regions can result in ineffective cooling in the morning. Therefore, a balanced approach of
increasing the health and greenness of green spaces along with generating tree canopy is essential.

5.2. Cooling Afternoon Heat (AF HI)

In the AF, the effects of EVI2, CC, and IC all show non‐linearity. The effective buffer is smaller at 10 m for EVI2
and IC, and 100 m for CC. To reduce HI in the AF, it is effective to increase EVI2 to above 0.2, as values below
0.2 do not significantly decrease HI. For CC, focusing on regions with CC around 0.2 and increasing them to 0.4 is
most effective, as this range shows the greatest cooling effect. This insight is particularly important for urban tree
planting programs, as it helps determine the most effective locations for planting. Like many cities, Chicago has a
tree planting program that is managed at neighborhood scales and these findings can be used to optimize these
efforts. For IC, it is crucial to decrease IC in regions below 0.7, as areas with IC above 0.7 do not experience
significant cooling even with reductions in IC. For the combined effect, it is important to increase both EVI2 and
CC. However, it is especially critical to increase CC in mid and high IC regions. By enhancing both EVI2 and CC,
but prioritizing CC in high IC areas, urban heat mitigation can be more effectively achieved during the hottest part
of the day.

5.3. Cooling Evening Heat (PM HI)

In the PM, the pattern of the effects of EVI2, CC, and IC is similar with the AF, but the non‐linearity decreases.
Additionally, the effective buffer for IC increases, so that IC have more larger effect. Furthermore, IC has highest
impact on PM HI, meaning that retained heat from impervious surfaces is the main driver of urban heat in the PM.
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For the reduction of PM HI, increasing EVI2 and CC at all levels and decreasing IC at all levels is effective, as the
non‐linearity is much less pronounced than in the AF. For the combined effect, it remains important to increase
both EVI2 and CC. However, it is more effective to increase CC alone than to increase EVI2 alone.

5.4. Conclusions

This study highlights the critical role of vegetation indices and land cover types in urban heat mitigation stra-
tegies. Consistent with previous studies, we find that the effect of land cover varies depending on the time of day
due to different physical mechanisms such as direct shading, canopy mixing, and urban heat retention. Addi-
tionally, we observe that different buffer sizes of vegetation have varying degrees of effectiveness in reducing
urban heat. Our analysis further demonstrates that strategic increases in EVI2 and CC, coupled with reductions in
IC and DW, can effectively reduce urban heat index. The findings also emphasize the importance of considering
the interactions between these variables to maximize cooling benefits. Specifically, increasing CC in conjunction
with EVI2 proves to be more effective than increasing EVI2 alone. Incorporating large water bodies within urban
environments can also provide substantial cooling benefits, particularly during the afternoon. Moreover, the
strategic selection of locations and targeted approaches for implementing these measures are essential for
maximizing their efficiency and effectiveness.

By implementing these strategies, cities can mitigate the urban heat island effect, improve thermal comfort, and
promote sustainable urban living. Effective urban heat mitigation requires not only increasing greenery and
reducing impervious surfaces but also carefully selecting the most impactful areas and employing integrated
approaches to ensure the best outcomes. These selections should not only focus on heat reduction but also
consider socio‐economic factors, addressing environmental justice issues to ensure that all communities,
particularly those historically underserved or disproportionately affected by heat, benefit equitably from urban
cooling efforts (Lee et al., 2024; McDonald et al., 2024; Mitchell & Chakraborty, 2015). Moreover, the idea of co‐
design is crucial, where neighborhoods might prioritize specific target criteria (such as reducing energy con-
sumption) over others (such as reducing heat risk from outdoor work). These approaches can be laid out, dis-
cussed, and prioritized through iterative design processes, and then implemented through community‐based
programs.

6. Limitations and Future Directions
This study is not without its limitations. First, it only focused on heat index in Chicago on 1 day in the summer,
making it difficult to generalize the results to other cities or seasons. However, the features observed here are
consistent with results from Madison, WI (Ziter et al., 2019) suggesting the results might be generalizable.
Secondly, the CC and IC data used are 2 years apart from the heat data, as the C‐CAP data are from 2021 while the
Heat Watch campaign was conducted in 2023. Although changes in CC and IC over 2 years are likely minimal,
this discrepancy introduces some uncertainty into the analysis. Thirdly, the measurements were conducted from
vehicles, resulting in a bias since all data were collected on impervious surfaces (roads). It would be beneficial to
have data measured by humans, allowing for a broader range of land covers, such as the middle of parks. Un-
fortunately, this was not the case in this study. Additionally, the measurements were conducted within a 1 hr
window. However, time‐dependent normalization or standardization of the measurements was not performed to
account for heat index fluctuations within that hour. Lastly, this study only considered EVI2, CC, IC, and DW.
Other meteorological variables, such as wind speed and direction, can also impact heat index and could be
included in future analyses to provide a more comprehensive understanding of urban heat dynamics.
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and impervious land cover data is available online (www.coast.noaa.gov/htdata/raster1/landcover/bulkdown-
load/hires/).
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