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ABSTRACT: This study utilizes hourly land surface temperature (LST) data from the Geostationary Operational Envi-
ronmental Satellite (GOES) to analyze the seasonal and diurnal characteristics of surface urban heat island intensity
(SUHII) across 120 largest U.S. cities and their surroundings. Distinct patterns emerge in the classification of seasonal
daytime SUHII and nighttime SUHII. Specifically, the enhanced vegetation index (EVI) and albedo (ALB) play pivotal
roles in influencing these temperature variations. The diurnal cycle of SUHII further reveals different trends, suggesting
that climate conditions, urban and nonurban land covers, and anthropogenic activities during nighttime hours affect SUHII
peaks. Exploring intracity LST dynamics, the study reveals a significant correlation between urban intensity (UI) and LST,
with LST rising as UI increases. Notably, populations identified as more vulnerable by the social vulnerability index (SVI)
are found in high UI regions. This results in discernible LST inequality, where the more vulnerable communities are un-
der higher LST conditions, possibly leading to higher heat exposure. This comprehensive study accentuates the signifi-
cance of tailoring city-specific climate change mitigation strategies, illuminating LST variations and their intertwined
societal implications.
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1. Introduction

As over 80% of the U.S. population resides in urban locales,
a detailed understanding of urban temperatures becomes cru-
cial within the context of climate impact assessments. The ur-
ban heat island (UHI) effect, a phenomenon where urban
regions exhibit higher temperatures than their rural counter-
parts, is a pivotal factor in determining urban temperature and
has profound societal and infrastructural impacts (Santágata
et al. 2017; Stone et al. 2021).

UHIs are generally categorized into two types: canopy urban
heat islands (CUHIs), which are derived from canopy-layer air
temperature, and surface urban heat islands (SUHIs), which
are based on surface temperature measurements. To measure
CUHI, methods such as station observations (Beck et al. 2018)
or mobile measurements (Leconte et al. 2015) have been exten-
sively utilized. However, these methods come with their own
set of limitations. Station observations, for instance, often suffer
from inadequate spatial coverage, failing to comprehensively
capture the temperature variations across an entire urban area.
Conversely, mobile measurements, while offering more spatial
flexibility, are not frequently conducted due to the considerable
manpower and financial resources required.

On the other hand, SUHI is predominantly assessed using
remote sensing techniques, including satellite observations.
This approach has been the focal point of numerous studies
(de Almeida et al. 2021; Deilami et al. 2018; Li et al. 2020;
Rasul et al. 2017; Shi et al. 2021), although it is worth noting
that SUHI assessments can be sensitive to the choice of data-
set, methodologies, and underlying assumptions (Chakraborty
et al. 2021; Hu and Brunsell 2013; Yao et al. 2018). In this
study, the primary focus is on SUHI, using satellite-based esti-
mates of land surface temperature (LST).

Research on SUHI includes extensive work on the factors
driving SUHI, which is primarily attributed to differences in the
energy balance between urban and nonurban areas (Manoli
et al. 2020; Oke et al. 2017). Key factors influencing this energy
balance disparity include variations in land cover (Li et al.
2020b; Morabito et al. 2021; Sarif et al. 2020) and anthropogenic
heat release (Jin et al. 2020; Zhou et al. 2014). Previous studies
also concluded that SUHI has profound societal and infrastruc-
tural impacts (Santágata et al. 2017; Stone et al. 2021). Consider-
ing that SUHI can differ greatly from city to city due to different
factors, including, but not limited to, climate conditions (Lai et al.
2021; Li et al. 2020a; Shao et al. 2023) or urban morphology
(Huang and Wang 2019; Zhou et al. 2022), efforts to mitigate
the impact of SUHI require city-specific or even neighborhood-
specific assessments that consider local climate, land use, and de-
mographic imprints on SUHI. Ultimately, mitigation strategies
need to be tailored to individual cities in ways that consider their
specific contexts.

While prior research has sought to evaluate multiple cities
across both global (Bechtel et al. 2019; Liu et al. 2022) and
regional (Bechtel et al. 2019; Tetali et al. 2022) scales to ana-
lyze factors influencing SUHI, these expansive studies have
not fully utilized the capabilities of geostationary satellites.
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The launch of the Geostationary Operational Environmental
Satellite (GOES-16 and GOES-17, hereafter referred to col-
lectively as GOES) series opened possibilities for detailed
temperature analyses across the United States (Chang et al.
2021; Lee and Dessler 2024; Li et al. 2021; Yu et al. 2008;
Zhang and Du 2022). The GOES satellites, with their capabil-
ity for hourly data acquisition, provide continuous observation
of LST. This feature is important to ensure that short-lived,
intense events do not go unnoticed. On the other hand,
polar-orbiting satellites, such as MODIS (Sidiqui et al. 2016;
Tomlinson et al. 2012) or Landsat (Kaplan et al. 2018; Sagris
and Sepp 2017), have comparatively longer revisit periods. To
address this shortcoming of infrequent LST estimates from
polar-orbiting satellites, researchers often use gap-filling tech-
niques (X. Li et al. 2018; Sarafanov et al. 2020; Shiff et al.
2021). However, employing such methods in urban environ-
ments demands a more profound comprehension of the city’s
energy budget, as they come with their intrinsic challenges
such as anthropogenic heat release (Jin et al. 2020; Wang et al.
2021; Yuan et al. 2022), materials of buildings (Farhadi et al.
2019; Subramanian 2023), or urban morphology (Huang and
Wang 2019; Zhou et al. 2022). In recognizing these limitations,
I use continuous hourly LST data offered by GOES to analyze
both the seasonal and diurnal characteristics of SUHI across
the 120 largest U.S. cities.

While traditional work on SUHI focuses on the LST dispar-
ity between urban and nonurban areas, recent work has also
emphasized the importance of intracity SUHI dynamics. These
detailed spatial analyses are particularly critical in the context
of temperature inequality within cities. This phenomenon can
manifest in situations where populations who are less equipped
to cope with extreme heat find themselves disproportionately
exposed to such conditions. Previous studies analyzed intracity
LST variations (Chang et al. 2022; Mentaschi et al. 2022; Yin
et al. 2023; Yuan et al. 2023), pinpointing that features such as
green spaces or water bodies significantly influence intracity
LST. Moreover, disparities in thermal comfort across major cit-
ies have been highlighted in past research (Hsu et al. 2021;
Wong et al. 2016; Wu et al. 2023). In the present study, I utilize
the social vulnerability index (SVI) along with population data
and high-resolution GOES LST data to provide a detailed ex-
amination of both intracity LST variations and the associated
social inequalities.

2. Data

a. Selection of major U.S. cities

A total of 120 major cities and their surroundings within
the United States are selected as the focal regions for this
study, with the selection based on population. In assessing the
climate of these cities and their nearby surroundings, substan-
tial surrounding areas are extracted for each city. In situations
where cities are too close and their surrounding territories
overlap (e.g., Dallas, Texas, and Fort Worth, Texas), they are
merged into a single study region. A total of 120 cities encap-
sulate an estimated population of 206 million, distributed
across a total area of 131 000 km2. This captures 62% of the

entire U.S. population while only accounting for 1.3% of the
national land area. The example of perimeters extracted in
the six largest cities can be found in Figs. 1a–f, while the pe-
rimeters for the rest of the cities can be found in section S1 in
the online supplemental material.

b. Land-cover data

I use land-cover data from the European Space Agency’s
(ESA) World Cover 2020 dataset (Zanaga et al. 2022). This
dataset, originating from the Sentinel-1 and Sentinel-2 satel-
lite constellations, provides a high-resolution view at 10 m
and includes 11 generic land surface classes: tree cover, shrub-
land, grassland, cropland, built-up areas, bare/sparse vegeta-
tion, snow/ice, permanent water bodies, herbaceous wetland,
mangrove, and moss/lichen. To harmonize these data with
other products utilized here, I adjust these data to 0.018 3

0.018 latitude–longitude grids. For each of these grid cells, the
encompassed land-cover types within a 0.0058 radius of the
grid’s center are identified. Following this, I calculate the pro-
portion of each land-cover class within each boundary. The
predominant land cover, determined by the greatest represen-
tation of a land-use type, then stands as the representative
land-cover type for that 0.018 grid. Figures 1a–f show the rep-
resentative land cover surrounding the six largest cities in the
analysis, whereas the coverage for all 120 cities and the num-
ber of pixels used are detailed in section S1.

Given the fine resolution of the land-cover data, minor seg-
ments of built-up areas surrounded by expansive non-built-up re-
gions are observed, as shown in Figs. 1a–f. These small segments
are unlikely to be classified as urban territories. On the other
hand, areas of non-built-up terrain enclosed by urban regions are
also noticeable. To accommodate the variances and refine urban
boundaries, I employ Gaussian smoothing. The mathematical ex-
pression of Gaussian smoothing is as Eq. (1):

G(x, y) 5 e2(x21y2/2s 2)

2ps2 : (1)

Here, x and y represent the distance from the origin in the
horizontal and vertical axes, which can be referred to as lati-
tude and longitude coordinates in this case. The term G(x, y)
is the Gaussian function, and s is the standard deviation of
the Gaussian distribution, which controls the magnitude of
the smoothing.

To implement Gaussian smoothing, I modify the land-cover
map by designating urban pixels with a value of 1 and nonur-
ban pixels with 0, creating a binary map. On this map, I apply
Gaussian smoothing using a s value of 1, a decision reached
through trial and error to achieve the most reasonable smooth-
ing outcome. This Gaussian smoothing preserves the structure
of dense urban areas, where clusters of urban pixels largely re-
tain their original state. On the other hand, isolated urban pix-
els experience a decrease in value. I establish a threshold of
0.5 to smooth out these diminished urban segments. In con-
trast, solitary nonurban pixels that gain a value above 0.5 after
smoothing, owing to their proximity to urban regions, are re-
classified as urban. This method effectively smooths minor

WEATHER , C L IMATE , AND SOC I ETY VOLUME 16316

Unauthenticated | Downloaded 03/19/25 02:19 AM UTC



inconsistencies between built-up and non-built-up areas, lead-
ing to a more generalized representation of urban boundaries.

Hereafter, regions bounded by these Gaussian-smoothed de-
marcations are termed “urban areas,” while their counterparts
are labeled “nonurban areas.” Importantly, both classifications
exclude water bodies, ensuring neither urban categories nor
nonurban categories comprise any permanent water features.
The extent of urban and nonurban areas of interest is visually
represented in Figs. 1a–f as well as in Fig. S1. Across all cities,
the average ratio of urban to nonurban pixels is 0.29. For a com-
prehensive breakdown of the number of urban and nonurban
pixels utilized in this study, refer to Table S1.

It should be noted that in certain cases, such as Los Ange-
les, California, as depicted in Fig. 1b, urban areas that could
be perceived as separate from the designated city region may
be encompassed in the study (e.g., the patch of urban areas in
the northeast of Los Angeles). Therefore, it is essential to

view the outcomes of this study not as specific to the exact
boundaries of individual cities, but rather as results that con-
sider a broader perspective, including the 120 major cities in
the United States and the potential inclusion of their sur-
rounding urban areas.

c. GOES-16/17 data

The LST data in this study come from the GOES LST data
(Yu and Yu 2020). The LST data used here cover the contigu-
ous United States (CONUS) for 5 years, from 2018 to 2022.
They are collected every hour and have a 2-km spatial resolu-
tion, which is about 0.028 latitude–longitude at the equator.
Because the LST data are on an irregular grid, they are
changed to fit a 0.018 regular grid, to match the land-cover da-
taset. For this change, the nearest neighbor method is used to
preserve all the information of GOES data by oversampling.
The inheriting limitation of the satellite data is that they

FIG. 1. (a)–(f) Land cover of the six largest cities analyzed. The white line delineates the boundary between urban and nonurban areas,
determined by applying a Gaussian smoothing. (g) Distribution of annual and seasonal SUHII across all 120 cities. In the boxplot, the cen-
tral box spans the interquartile range (from the 25th percentile to the 75th percentile). Whiskers extend up to 1.5 times this range, and me-
dian values are marked with red lines. (h) A spatial depiction of the cities with their corresponding annual mean SUHII values.
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cannot measure temperatures under clouds. To address this, I
use a cloud mask product from GOES to remove data from
cloudy areas. Thus, the LST data used in this study can be
viewed as cloud-free hourly LST data for each city.

d. Auxiliary data

To get a clearer picture of the atmospheric and climate con-
ditions for each city, the ERA5 Land monthly dataset (Muñoz-
Sabater et al. 2021) is used. This dataset is on a 0.18 grid and
provides monthly averages of 2-m air temperature (T2M) and
2-m dewpoint temperature (D2M) for the cities and the sur-
roundings. Using T2M and D2M data, I also calculate the sur-
face relative humidity (RH). It should be noted that the ERA5
dataset does not explicitly account for urban area effects.

Furthermore, the enhanced vegetation index (EVI, VNP13A3)
data, obtained from the Visible Infrared Imaging Radiometer
Suite (VIIRS), is used as ametric for vegetation. Although other
metrics, such as the normalized difference vegetation index
(NDVI) or the leaf area index (LAI), are available, the choice of
EVI is based on the observation that different indices do not sig-
nificantly alter the overall study results. Additionally, two other
VIIRS datasets were utilized: albedo (ALB, VNP43MA3) and
nighttime light (NL, VNP46A3). These datasets were originally
in a 1-km irregular grid format but were regridded to a 0.018
regular grid using the same methodology applied to the
GOES LST data. I calculate the differences between urban
and nonurban values for EVI, ALB, and NL, referred to as
DEVI, DALB, and DNL, respectively. While EVI is a monthly
product, ALB and NL are available daily. To ensure unifor-
mity across all data types, monthly averages were computed
for ALB and NL.

e. Population and social vulnerability index

The Gridded Population of the World Version 4 (GPW v4)
dataset is used for the population data (Doxsey-Whitfield et al.
2015). This dataset presents data in 30-arc-s latitude–longi-
tude grids. To align the population data with other datasets, I
aggregate the data into a 0.018 regular grid. First, I assign each
grid cell in the population dataset to its nearest point on the
0.018 regular grid. At each of these 0.018 grid points, the popu-
lations of all assigned grid cells are summed, allowing for the
transposition of the population data onto a 0.018 regular grid
without changing the total population count.

I also integrate the gridded SVI for socioeconomic insights
(Flanagan et al. 2011). The gridded SVI product encompasses
various subcategories, such as socioeconomic status, house-
hold composition, disability, minority status, language, hous-
ing type, and transportation. SVI is initially at the census tract
level. However, for this study, I utilize SVI data that have
been regridded to a 1-km resolution by the Socioeconomic
Data and Applications Center (SEDAC). These regridded
SVI data are available for the years 2000, 2010, 2014, 2016,
and 2018. I use 1-km resolution SVI data from 2018, as they
align most closely with the study period (2018–22). SVI values
can vary between 0 and 1, with 1 pointing to the most vulnera-
ble population segments. SVI values are originally in 1-km
resolution, so I also adjust these data to the 0.018 regular grid,

using an approach like that of the population dataset, but
values are averaged instead of summed.

All data used in this study are summarized in section S2,
including source, resolution, and processing method.

3. Method of analysis

a. Surface urban heat island

A crucial factor in analyzing urban temperature is the
SUHI effect. The SUHI intensity (SUHII) represents the
temperature difference between urban and nonurban areas.
To determine this, the mean temperature within urban
boundaries is calculated hourly. The difference between this
and the hourly mean temperature in nonurban regions yields
the hourly SUHII. Due to occasional observation limitations
in GOES LST caused by cloud cover, hours with more than
50% cloud cover over urban or nonurban regions are ex-
cluded. This process yields a city-specific cloud-free SUHII
time series with hourly intervals, spanning 5 years (2018–22).

Initially, the overall SUHII is determined for each city by
averaging all SUHII time-series values. Subsequently, SUHII
is computed seasonally, divided as follows:March–May (MAM),
June–August (JJA), September–November (SON), and
December–February (DJF). Mathematically, this can be ex-
pressed as Eq. (2), where s represents each season (MAM, JJA,
SON, andDJF):

SUHII(s) 5 LSTurban(s) 2 LSTnonurban(s): (2)

Throughout the research period, the mean SUHII across all
cities is 1.98C. As depicted in Fig. 1g, the JJA season shows
the highest average SUHII across all cities at 2.28C. Figure 1f
presents the spatial distribution of the annual SUHII for each
city. Across all 120 cities and seasons, SUHII consistently dis-
plays positive values for all cities and seasons. The only excep-
tion is San Diego, California, during the JJA season, where
the SUHII registers at20.28C.

The increased LST in urban areas is primarily attributed to
differences in land cover between urban and nonurban areas,
as established in numerous previous studies (Bechtel et al.
2019; Peng et al. 2018; Rousta et al. 2018; Yao et al. 2019). In
the analysis of 120 cities in this study, the average surrounding
land cover consists of 51% trees, 22% grass, and 17% crop-
lands. Notably, the presence of trees and grass significantly
contributes to the reduction in LST, thereby playing a crucial
role in the SUHI effect (Bindajam et al. 2020; Guha and Govil
2022; Rogan et al. 2013; Yang and Yao 2022).

b. Seasonal and diurnal SUHI cycles

Delving deeper into the details of SUHII and its seasonal
variations, a monthly average for each city is derived from the
5-yr hourly SUHII data. Given that daytime SUHII and night-
time SUHII exhibit different characteristics (Chakraborty et al.
2020; Liu et al. 2022; Rasul et al. 2016), two distinct monthly
averages are determined: one for daytime SUHII and another
for nighttime SUHII. Hourly SUHII values are classified as
day or night for each day based on the calculated sunrise and
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sunset times specific to each city and date. From these classifi-
cations, monthly average values for both daytime SUHII and
nighttime SUHII are obtained. Mathematically, the seasonal
cycle of SUHII for daytime and nighttime can be expressed as
Eqs. (3) and (4):

Seasonaldaytime(m, C) 5
∑
5

y51
∑

Ndm,m,y(C)

h51
SUHIIdaytime(h, m, y, C)

∑
5

y51
Ndm,m,y(C)

,

(3)

Seasonalnighttime(m, C) 5
∑
5

y51
∑

Nnm,m,y(C)

h51
SUHIInighttime(h, m, y, C)

∑
5

y51
Nnm,m,y(C)

:

(4)

In Eqs. (3) and (4), Seasonaldaytime(m,C) and Seasonalnighttime(m,C)
each represent the seasonal cycles of daytime SUHII and nighttime
SUHII, at monthm and city C. In Eq. (3), SUHIIdaytime(h,m, y, C)
is the daytime SUHII value for a given daytime hour h, month m,
and year y for cityC. The termNdm,m,y(C) is the number of daytime
hours in monthm of year y for cityC. The same convention is used
in Eq. (4), but for nighttime, where SUHIIdaytime(h, m, y, C) is the
nighttime SUHII value and Nnm,m,y(C) is the number of nighttime
hours.

A similar approach is also applied to diurnal variations of
SUHI by averaging SUHII for each hour of the day across
the entire study period. The mathematical expression for
calculating the diurnal SUHI cycle can be represented as
Eq. (5):

Diurnal(h, C) 5
∑
5

y51
∑
12

m51
∑
Dm

d51
SUHII(h, d, m, y, C)

∑
5

y51
∑
12

m51
Dm

: (5)

In Eq. (5), the Diurnal(h, C) represents the average SUHII
for a given hour h across all cities denoted by C. The numera-
tor aggregates the hourly SUHII values SUHII(h, d, m, y, C),
which are specific to each city C for each hour h, day d, month
m, and year y across the 5-yr study period. The term Dm cor-
responds to the number of days in each monthm. The denom-
inator divides the sum of SUHII values by the total number
of hours that contribute to the dataset, resulting in an average
that encapsulates the diurnal variation of SUHII.

c. k-means clustering

For each of the two seasonal cycles (daytime and night-
time), cities show similarities and disparities. To analyze both
shared and unique patterns of seasonal SUHII variation
across cities, I utilize k-means clustering. The initial step in
the clustering process involves normalizing 120 city-specific,
12-month time series. Each city’s seasonal SUHII cycle is

normalized by subtracting the mean and dividing by the stan-
dard deviation, which allows us to focus on the relative shape
of the cycles, not the absolute magnitude.

To further refine the analysis, I embed a 1-month lag into
each time series to adjust for potential phase shifts between
the cycles. This embedding is essential for synchronizing
cycles that may differ by a 1-month offset, thereby allowing
the clustering algorithm to more accurately group cities with
synchronized SUHII patterns. In mathematical terms, for a
given time series ts of length 12 (monthly time series), the
embedding translates into constructing a new matrix where
each row is formed by pairing the original time series with its
1-month lagged sequence. Consequently, the resulting matrix
for each city’s seasonal cycle is an 11 3 2 array, where one
column is the original time series, and the other is its 1-month
lagged counterpart.

Finally, I use the k-means clustering method for each of the
seasonal cycles. Mathematically, this can be achieved by solv-
ing the optimization problem as in Eq. (6):

minimize : ∑
k

j51
∑
i2Sj

‖X′
i 2 mj‖

2: (6)

In Eq. (6), X′
i represents the ith embedded time series after

applying a 1-month lag, Sj is the set of indices of the time se-
ries belonging to the jth cluster, and mj is the centroid of the
jth cluster.

A similar calculation is done for the diurnal cycle, with the
difference being the length of each time series being 24 h,
rather than 12 months, and the lag being 1 h, rather than
1 month. The number of clusters k is selected using the silhou-
ette score and is determined at 3 for seasonal daytime, 2 for
seasonal nighttime SUHII, and 2 for diurnal SUHII. Details
on calculating the optimal number of clusters can be found in
section S3.

4. Seasonal and diurnal SUHI cycles

a. Daytime SUHII seasonal cycle

Figure 2 depicts the description of the daytime SUHII sea-
sonal cycle. The assigned cluster for each city and the propor-
tional distribution of clusters are illustrated in Figs. 2a and 2b,
respectively. In Fig. 2c, the normalized mean of the daytime
seasonal SUHII cycle for cities in cluster 1 is presented. SU-
HII values are normalized to address the varying intensities
across cities, simplifying the process of identifying the general
pattern of the seasonal cycle. Given that 67% of the cities fall
within cluster 1, this pattern can be regarded as typical of the
daytime seasonal cycle of SUHII. The land covers surround-
ing these cities are detailed in Fig. 2d. The seasonal cycles of
RH}using monthly averages from both urban and nonurban
areas}nonurban EVI, and normalized DEVI are displayed in
Figs. 2e–g.

The second most common SUHII pattern is captured by
cluster 2 (21%) as shown in Fig. 2h. The cities that fall within
this cluster show the daytime seasonal cycle of SUHII that in-
cludes a pronounced decline during the late spring and early
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summer months (April–June). The cause for this pattern may
be that these cities are more commonly surrounded by crop-
lands, constituting 46%, surrounding the cities in cluster 2, as
illustrated in Fig. 2i. Previous studies found that croplands
typically exhibit higher LST than other natural land covers,
particularly in the spring season prior to planting (Raman-
kutty et al. 2006; Y.-C. Wang et al. 2018; Wickham et al.
2012), and this high LST of croplands tends to decrease in the
fall season, when vegetation of croplands increases (Shen et al.
2018; Yang et al. 2020). Elevated LST in croplands results in a

lower LST difference between urban and nonurban regions,
leading to a reduction in SUHII in the spring season, as evi-
denced in Fig. 2h. Moreover, an increase in nonurban EVI
(Fig. 2k) and a decrease in DEVI (Fig. 2l) drive the SUHII
peak in August, depicted in Fig. 2h. Given that an elevated
EVI is associated with cooler LST, it is expected that a higher
DEVI would decrease daytime SUHII. In line with this ex-
pectation, the patterns in Figs. 2h and 2l appear inversely re-
lated, offering clarity on the daytime SUHII behavior in
cluster 2.

FIG. 2. (a) Clusters assigned to each of the 120 cities in this study, based on daytime seasonal SUHII patterns. (b) Proportional represen-
tation of each cluster. (c) Daytime seasonal cycle of normalized SUHII for cities within cluster 1. The black line represents the average,
while the shaded area indicates the one standard deviation range. (d) Nonurban land covers associated with the cities in cluster 1. Percen-
tages of each land-cover type are determined for every city and then averaged to display the composite value. (e) The seasonal cycle of RH
in cities is categorized under cluster 1. Both urban and nonurban RH estimates contribute to the mean values. The black line signifies the
average, with the shaded area marking the one standard deviation range. (f) As in (e), but for nonurban EVI. (g) As in (e), but for normal-
ized DEVI. (h)–(l) As in (c)–(g), but for cluster 2. (m)–(q) As in (c)–(g), but for cluster 3.
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Cities within cluster 3 (12%) are characterized by their arid
climate, as indicated by low RH values shown in Fig. 2o, and
a predominance of grass and bare land covers surrounding
the cities, as delineated in Fig. 2n. Furthermore, a notably
lower EVI is observed in cities in cluster 3 in comparison with
other clusters (Fig. 2p). A distinctive seasonal cycle of DEVI,
peaking in summer, is seen in these cities, which explains the
pattern of seasonal SUHII in cluster 3. This pattern of sea-
sonal cycle in arid cities is also reported in the previous study
(Liu et al. 2022). In summary, as observed in both cluster 2
and cluster 3, DEVI is identified as a primary factor influencing

the daytime seasonal SUHII. Quantitatively, the average cor-
relation coefficient between seasonal SUHII and DEVI for all
cities is20.51.

b. Nighttime SUHII seasonal cycle

Nighttime seasonal SUHII is classified into two clusters, as
illustrated in Fig. 3. Most cities fall under cluster 1, while only
10% are categorized into cluster 2 (Figs. 3a,b). A significant
difference between clusters 1 and 2 is the reduction in night-
time SUHII during the summer months (Figs. 3c,g). Several
potential factors can contribute to the inverse seasonal pattern

FIG. 3. (a) Clusters assigned to each of the 120 cities in this study, based on nighttime seasonal SUHII patterns. (b) Proportional repre-
sentation of each cluster. (c) The nighttime seasonal cycle of normalized SUHII for cities within cluster 1. The black line represents the av-
erage, while the shaded area indicates the one standard deviation range. (d) Nonurban land covers associated with the cities in cluster 1.
Percentages of each land-cover type are determined for every city and then averaged to display the composite value. (e) The seasonal cycle
of DEVI in cities categorized under cluster 1. The values of DEVI are normalized for each city. The black line signifies the average, with
the shaded area marking the one standard deviation range. (f) As in (e), but for normalized DALB. (g)–(j) As in (c)–(f), but for cluster 2.
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between the cities in clusters 1 and 2. First, the role of DEVI
is possible. As discussed in the previous section, DEVI is in-
versely correlated with SUHII. This correlation clarifies the
elevated levels of SUHII in the spring season for cluster 2,
when DEVI is lower. Additionally, the notable summer de-
crease in DEVI observed in cluster 1 is less prominent in clus-
ter 2, accounting for the summertime disparity in SUHII in
clusters 1 and 2.

Another possible influential variable is DALB, known to be
a significant determinant of nighttime SUHI. Previous studies
indicate that higher DALB values generally correspond to re-
duced nighttime SUHII (Dutta et al. 2022; Liu et al. 2022).
The primary energy source for nighttime SUHI originates
from the heat absorbed by urban environments during the
day. However, when urban ALB is high, most of this energy
is reflected during the daytime, leaving less residual heat to
drive nighttime SUHI. The reduction in DALB during the
summer months is shown in cluster 1 but not in cluster 2,
accounting for the observed discrepancies in summertime
SUHII between the two clusters.

However, the predominance of cities in cluster 1, coupled
with the significant error margins in potential drivers such as
DEVI and DALB, complicates the identification of specific
factors influencing nighttime SUHI in cluster 2. This complex-
ity is accentuated in the nocturnal context, where SUHI dynamics
are inherently more complex than daytime, as evidenced by previ-
ous studies (ElKenawy et al. 2020; Krayenhoff et al. 2018; Leconte
et al. 2020; Ming et al. 2023; Wang and Li 2017). Additionally, this
study does not encompass certain mechanisms known to affect
nighttime SUHI. Notably, the influence of 2D/3D urban mor-
phology, which plays a significant role in shaping nighttime
SUHI dynamics (El Kenawy et al. 2020; Peng et al. 2022;
Siddiqui et al. 2021), was not examined. Furthermore, factors
such as the higher thermal admittance of building materials
(Oke 1982; Subramanian 2023) and the contribution of anthro-
pogenic heat emissions (Best and Grimmond 2015; Feng et al.
2012; Ward et al. 2016) further add to the challenges in pinpoint-
ing distinct drivers of nighttime SUHI. Given the complexity of
nighttime SUHI dynamics and the limitations observed in this
study, it becomes evident that further research is essential to com-
prehensively understand and accurately identify the drivers of
nighttime SUHI.

c. Diurnal cycle of SUHII

Leveraging the hourly LST measurements provided by
GOES, I conduct a more detailed assessment of the SUHII
by analyzing its diurnal cycle. The diurnal cycle of SUHII in
clusters 1 and 2 shows a significant discrepancy, as cluster 1
follows the general cycle of incoming solar radiation, while
cluster 2 peaks in the late evening (2000–2100 LT) and
reaches its minimum in the morning (0800–0900 LT).

An examination of land cover (Figs. 4d,f), RH (Fig. 4g),
and EVI (Fig. 4h) reveals that cities in cluster 2 are character-
ized by a more arid climate with lower humidity and reduced
vegetation. Previous studies have noted that a diurnal SUHII
pattern peaking at nighttime, rather than at noon, is typical
for cities situated in arid climates with sparse vegetation (Liu

et al. 2022; C. Wang et al. 2018; Wang et al. 2016; Wang and
Li 2021). Utilizing the Kruskal–Wallis test to examine the sig-
nificance of differences in RH and EVI between the two clus-
ters, both variables are found to have statistically significant
differences in their means (P, 0.05).

Upon analysis of DEVI (Fig. 4i), DALB (Fig. 4j), and DNL
(Fig. 4k), all three variables are identified as statistically dis-
tinguishable between the two clusters (P , 0.05). Despite
cluster 2 generally displaying reduced EVI (Fig. 4h), a greater
DEVI is observed (Fig. 4i) in this cluster. This means that in
such locales, the bare soils in nonurban regions heat up more
quickly than those in urban areas, contributing to lower
SUHII values following sunrise. This phenomenon is further
substantiated by the lower DALB values in these cities, where
high nonurban DALB is attributed to sparse vegetation and
exposed soils. Furthermore, as low DALB can be translated
to lower ALB in urban regions, cities with low DALB (cluster 2)
will absorb more radiated heat during the daytime. This ab-
sorbed heat will be released slowly at nighttime, which causes
the nighttime SUHII to increase, as in cluster 2.

Additionally, DNL is found to be considerably higher in
cluster 2. The variable DNL serves as an indicator correlated
with the urban-to-nonurban gradient of human activity or an-
thropogenic heat released during the nighttime. Elevated DNL
levels indicate greater anthropogenic heat release in urban
areas, consequently resulting in increased nighttime SUHII, as
observed in cluster 2 (Fig. 2e). A complete figure regarding
daytime seasonal SUHII, nighttime seasonal SUHII, and diur-
nal SUHII can be found in section S4.

5. Intracity LST and climate inequality

a. Intracity LST by UI

Until this point, the emphasis has been on the city scale
without considering intracity LST differences. To study the in-
tracity difference, I utilize land-cover data. In previous sec-
tions, land cover for each GOES grid point was determined
using a land cover with the highest percentage within a 0.0058
radius of GOES grids. However, for the analysis of intracity
LST, land cover for each GOES grid point is not determined
as a single representative. Instead, the percentage of built-up
area within a 0.0058 radius is calculated and referred to as
urban intensity (UI). This metric serves to quantify each
GOES grid point based on the extent of built-up areas, con-
sidering intracity variations in non-built-up areas (vegetation
or water bodies). Such calculations are performed exclusively
within the urban boundaries, as indicated by the white lines
in Figs. 1a–f.

To assess intracity variations in LST, timestamps are ini-
tially selected where over 90% of the urban boundary is free
of cloud cover. For these selected timestamps, LST anoma-
lies are calculated. An LST anomaly at a given grid point
is defined as the LST at that gridpoint time minus the aver-
age LST within the city-specific urban boundaries within
the same timestamp. Thus, it indicates how much each grid
point is hotter or cooler than other contemporary local urban
areas.
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Figure 5a depicts the change in average LST anomaly for
each 10% increment in UI. The figure illustrates a trend
where LST anomaly rises as the UI escalates, meaning that at
a given time, high UI grid points have higher LSTs than their
lower UI counterparts. For every 10% increment in UI, the
LST rises by 0.0668C. This positive correlation holds across all
cities, as demonstrated in Fig. 5b.

When examining the average diurnal variation of intracity
LST anomalies across the 10% UI bins (Fig. 5c), a significant
LST offset is observed around early evening (1800–2000 LT)
and is at its lowest around noon. This indicates that during
peak solar radiation times, intracity LST variations are pri-
marily influenced by the incoming solar radiation, thus mini-
mizing differences due to UI. In contrast, during the evening,

areas with higher UI tend to exhibit increased LSTs. This is at-
tributed to urban materials releasing stored heat from the day-
time. This trend is also consistent in all cities, as shown in Fig. 5d,
where the slope of LST andUI is greatest during the evening.

b. Social inequality

Social inequality in thermal comfort has been an interest in
previous studies (Pereira et al. 2021; Wu et al. 2023). Although
a complex relationship exists between LST and thermal com-
fort, in a way that LST might overestimate the variability in air
temperature and, consequently, in thermal comfort, it can still
serve as an indirect proxy of thermal comfort (Goldblatt et al.
2021; Imran et al. 2021; Patel et al. 2024). In that context, I
now compare the LST differences within cities with SVI data.

FIG. 4. (a) Clusters assigned to each of the 120 cities in this study, based on diurnal SUHII patterns. (b) Proportional representation of
each cluster. (c) Diurnal cycle of normalized SUHII for cities within cluster 1. The black line represents the average, while the shaded area
indicates the one standard deviation range. (d) Nonurban land covers associated with the cities in cluster 1. Percentages of each land-cover
type are determined for every city and then averaged to display the composite value. (e),(f) As in (c) and (d), but for cluster 2. (g) Distribu-
tion of average RH from cluster 1 (blue) and cluster 2 (orange). In the boxplot, the central box spans the interquartile range (from the 25th
percentile to the 75th percentile). Whiskers extend up to 1.5 times this range, and median values are marked with black lines. The p value
from the Kruskal–Wallis test to compare the significant difference between the two samples is also denoted in the figure. (h)–(k) As in (g),
but for EVI, DEVI, DALB, and DNL, respectively.
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As in Fig. 6a, SVI tends to be positively correlated with UI,
meaning that populations with high vulnerability are in inten-
sive urban environments. This trend is true in 90% of the cities
(108 out of 120 cities), and for the cities that have a negative cor-
relation, the magnitude of the slope is small, as seen in Fig. 6b.
By this, one can expect that high SVI communities would be un-
der higher LST conditions.

To correlate SVI levels to LST, a population-weighted SVI
threshold is derived. This method is adopted due to the disparate
SVI ranges observed across different cities. Utilizing the gridded
population dataset, an array of SVIs is constructed, where its
length mirrors the population size. Each element of this array de-
notes the SVI for every individual within the city. Subsequently,
percentile thresholds of SVI are determined in 10-percentile in-
crements. Leveraging these thresholds, individual grid points
are categorized based on their corresponding SVI percentiles.
Since the focus is on the inequality of LST to different SVI
levels, the average LST of the most vulnerable population
segment (those over the 90th percentile of SVI) is compared
to the least vulnerable segment (those below the 10th percentile
of SVI) by subtracting the LST of low SVI groups from the
high SVI groups, during summertime (JJA) from 1000 to
1600 LT, the peak LST period. This measure provides insight
into the average LST differential between populations with
high and low vulnerability during the hottest periods. This
metric is subsequently referred to as the heat inequality in-
dex (HII).

Upon examination of the HII distribution across cities, it is
observed that the average HII is at 0.548C (red line in Fig. 6c).
This indicates that during periods of high heat, the more vul-
nerable populations experience even higher LSTs, by an aver-
age of 0.548C. Such a trend is observed in most cities, with 103
out of 120 cities exhibiting this pattern. These findings suggest
that communities with more vulnerability are typically situ-
ated in areas of high urban intensity, and as a result, they face
higher LSTs during the summer, averaging a difference of
0.548C. A complete table of information regarding UI, SVI,
and HII for individual cities can be found in section S5.

It is important to note that both the SVI and the UI are pre-
sented on a 0.018 3 0.018 regular grid. While this granularity
might not be adequate for detailed analyses, such as examining
SVI changes at the neighborhood or block level, it is important
to consider the underlying data sources. SVI is derived from cen-
sus tract data, and the LST product used in this study represents
an average over a 2-km resolution. Consequently, the observed
relationship between LST and SVI should be interpreted as in-
dicative of general trends rather than precise local variations.

6. Summary and conclusions

Using the hourly LST measurements from GOES, I carried
out an assessment of the seasonal and diurnal cycles of SUHII,
as well as intracity LST variation and associated societal in-
equality. For the seasonal cycle of daytime SUHII, 120 cities

FIG. 5. (a) Boxplot of LST anomaly across each 10% UI increment. Each box denotes the distribution of LST
anomaly in 120 cities in this study. In the boxplot, the central box spans the interquartile range (from the 25th percen-
tile to the 75th percentile). Whiskers extend up to 1.5 times this range, and median values are marked with black lines.
(b) Spatial distribution of the UI and LST anomaly slopes for individual cities, derived from (a). (c) Diurnal variation
in LST anomaly, averaged across cities, presented for each UI bin. (d) The hourly UI–LST slope. Each box illustrates
the distribution of the UI–LST slope across 120 cities, presented similarly to (a).
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are categorized into three distinct clusters, with regional EVI
identified as the primary determinant of SUHI due to its capa-
bility to cool surrounding LST. The seasonal cycle of nighttime
SUHII is grouped into two clusters where most of the cities
are assigned to cluster 1. The mechanisms governing this are
more complex. However, both EVI and ALB are determined
to possibly affect the seasonal cycle of nighttime SUHII. The
diurnal cycle of SUHII is divided into two clusters: The first
cluster exhibits a diurnal cycle that peaks around noon, while
the second cluster peaks in the evening. This variation arises
from factors such as the city’s humidity levels, land cover, and
the extent of human activity during nighttime hours.

Looking at the intracity LST distribution, a positive correla-
tion between intracity LST and UI was identified. Within a
given city, areas with a higher proportion of built structures,
as opposed to green spaces or water bodies, exhibited ele-
vated LST. Specifically, a 0.0668C increase in LST was ob-
served for every 10% rise in UI. Additionally, a correlation
between SVI and UI was detected, with SVI increasing by
0.009 for every 10% escalation in UI. These interrelationships
among UI, LST, and SVI contribute to LST inequality. The
findings of this study reveal that during peak heat periods, the
more vulnerable population segments experience LST that is
0.548C warmer than their less vulnerable counterparts.

In this study, I explore LST variations across 120 U.S. cities
utilizing GOES data. The unique capability of GOES satellites

to provide hourly LST lends a distinct advantage and authen-
ticity to this research. This effort to create a database of the
SUHI effect on major cities in the United States is novel, as
previous research used LST that is estimated once daily, or
gap-filled LST estimates from polar-orbiting satellites to con-
duct similar research (Bechtel et al. 2019; Liu et al. 2022).
Moreover, I investigate the physical mechanisms that govern
the SUHII dynamics across individual cities. Recognizing
unique drivers is important, as it underscores the necessity for
tailored climate change mitigation strategies based on the dis-
tinctive characteristics of each city.

For example, the majority of cities belong to cluster 1 in
both seasonal and diurnal cycles of SUHII}which indicates
higher SUHII in summer and noon. Since this study found
that DEVI plays a critical role in this pattern, increasing urban
green spaces could significantly help mitigate SUHI in these
cities. On the other hand, cities that suffer higher LST at
nighttime (cluster 2 in the diurnal cycle) should minimize the
impact of SUHI by decreasing nighttime activity (DNL) or in-
creasing ALB of infrastructure to reflect daytime incoming ra-
diation, which serves as an energy source for the nighttime
SUHII.

I further investigate the intricate relationship between intrac-
ity LST variations and societal inequality. The significant contri-
bution of this research lies in its exploration of how urban heat
distribution correlates with social disparities within cities. The

FIG. 6. (a) Boxplot of SVI across each 10% UI increment. Each box denotes the distribution of LST anomaly in
120 cities in this study. In the boxplot, the central box spans the interquartile range (from the 25th percentile to the
75th percentile). Whiskers extend up to 1.5 times this range, and median values are marked with black lines. (b) Spa-
tial distribution of the UI SVI slope for individual cities, derived from (a). (c) Histogram of HII across all cities. The
red dashed line denotes the mean, while the shaded region shows the one standard deviation range. (d) Spatial distri-
bution of HII for individual cities, derived from (c).
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insights gained are not just academically intriguing}they have
profound implications for real-world applications. For instance,
thermal discomfort, which can be caused by high LST, can lead
to substantial health impacts (Lee and Dessler 2023). Popu-
lations with higher vulnerability often lack the necessary re-
sources and access to effectively mitigate these potential impacts.
This disparity underscores the importance of addressing environ-
mental and social inequities in urban planning and public health
initiatives. This aligns with critical social justice considerations in
environmental research, highlighting areas where intervention
can yield the most significant impact.

7. Limitations and future direction

While this study makes significant strides in understanding
urban LST dynamics, it has limitations and potential avenues
for enhancement. First, the inherent constraint of satellite
measurements is that they capture only surface temperatures.
Measures such as 2-m air temperature or wet-bulb tempera-
ture, which can have a more direct societal impact, are not ac-
cessible through this method.

Second, there is room for improvement in identifying po-
tential drivers of seasonal and diurnal SUHI cycles, particu-
larly those associated with nighttime seasonal variations. In
this study, I utilize satellite-based estimates of EVI, ALB, and
NL, along with reanalysis data of T2M and RH. However, as
noted in the previous section and corroborated by earlier
studies, pinpointing drivers of the nighttime seasonal cycle
may require the incorporation of additional predictors. These
include aspects of urban morphology (El Kenawy et al. 2020;
Peng et al. 2022; Siddiqui et al. 2021), building orientation
and materials (Farhadi et al. 2019; Okumus and Terzi 2021;
Subramanian 2023), and further socioeconomic data (Best
and Grimmond 2015; Feng et al. 2012; Ward et al. 2016), such
as traffic patterns (Derdouri et al. 2021; H. Li et al. 2018).
These factors could provide a more comprehensive under-
standing of the variables influencing the nighttime seasonal
cycles of SUHI.

Third, it is notable that I employed the SVI to quantify
population vulnerability, an index that integrates multiple fac-
tors influencing various vulnerabilities across the population.
In future studies with a similar framework yet targeting spe-
cific outcomes related to heat, such as health, it is crucial to
emphasize factors such as age or insurance coverage more sig-
nificantly than the general SVI. Similarly, when the research
objective centers on economic status, it is imperative to con-
centrate more on variables such as income or employment
rates.

Last, the 2-km resolution offered by GOES satellites, though
beneficial in terms of continuous monitoring, is coarser than
that offered by some polar-orbiting satellites. This can pose
challenges for a detailed intracity LST analysis, especially if the
focus is neighborhood or block scale. In this study, I used SVI
data, which are originally at the census tract level (around
4000 population), which is comparable with the GOES resolu-
tion of 2 km. However, for a detailed block-level analysis,
LST with higher spatial resolution may be needed, whether

from polar-orbiting satellites or through downscaling of LST
estimates.
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