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ABSTRACT: The Electric Reliability Council of Texas (ERCOT) manages the electric power across most of Texas. They
make short-term assessments of electricity demand on the basis of historical weather over the last two decades, thereby
ignoring the effects of climate change and the possibility of weather variability outside the recent historical range. In this
paper, we develop an empirical method to predict the impact of weather on energy demand. We use that with a large
ensemble of climate model runs to construct a probability distribution of power demand on the ERCOT grid for summer
and winter 2021. We find that the most severe weather events will use 100% of available power}if anything goes wrong,
as it did during the 2021 winter, there will not be sufficient available power. More quantitatively, we estimate a 5% chance
that maximum power demand would be within 4.3 and 7.9 GW of ERCOT’s estimate of best-case available resources dur-
ing summer and winter 2021, respectively, and a 20% chance it would be within 7.1 and 17 GW. The shortage of power on
the ERCOT grid is partially hidden by the fact that ERCOTs seasonal assessments, which are based entirely on historical
weather, are too low. Prior to the 2021 winter blackout, ERCOT forecast an extreme peak load of 67 GW. In reality, we
estimate hourly peak demand was 82 GW, 22% above ERCOT’s most extreme forecast and about equal to the best-case
available power. Given the high stakes, ERCOT should develop probabilistic estimates using modern scientific tools to pre-
dict the range of power demand more accurately.
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1. Introduction

Most of the citizens of Texas get electricity from a grid
managed by the Electric Reliability Council of Texas
(ERCOT). During February 2021, a significant winter storm
(Doss-Gollin et al. 2021) caused widespread blackouts
throughout the state that left more than 10 million people
without electricity (Busby et al. 2021). These blackouts and
their downstream impacts led to the deaths of hundreds
of people and caused nearly $200 billion of damages
(Frankenfield 2021; Ivanova 2021).

To maintain the reliability of the grid, ERCOT makes
short-term seasonal power-demand assessments (e.g., https://
www.ercot.com/files/docs/2020/11/05/SARA-FinalWinter2020-
2021.pdf) to ensure adequate resources will be available.
These assessments are based on the weather from the past
decade and factors such as population, but they do not account
for a changing climate or the likelihood of climate variability
outside the very recent historical record. The impact of
extreme temperatures resulting from climate change and
extreme variability on power demand have been investigated
in multiple studies and in different regions (Auffhammer et al.
2017; Franco and Sanstad 2008; Kim and Lee 2019). In this
paper, we evaluate ERCOT’s method and develop a new

method for incorporating more realistic predictions of future
weather into energy projections for Texas.

2. The model ensemble and comparisons with historical
temperature data

Our observational temperature data are daily-average 2-m
air temperatures from the ECMWF ERA5 reanalysis
(Hersbach et al. 2020), which has a resolution of 0.258 for both
latitude and longitude and hourly temporal resolution. Aver-
age daily temperature for ERA5 is calculated by averaging the
hourly temperatures in a day. While the reanalysis might pro-
duce a smoother temperature field than reality, our analysis
uses Texas-average temperature, and this large-scale average
should be insensitive to smoothing of the temperature field.

We also use temperatures from an ensemble of 39 model
runs known as the Community Earth System Model Large
Ensemble (CESM-LE) (Kay et al. 2015), which has a resolu-
tion of 0.948 3 1.258 for latitude and longitude. CESM-LE
only has daily average values of temperature, and we take
these values from 1981 to 2021 for historical analysis and to
2025 for future analysis. The members of this ensemble use an
identical climate model and the same evolution of historical
natural and anthropogenic forcing. The members differ only
in their initial conditions, so the variation in climate across
the ensemble is entirely due to random climate and weather
variability.

To estimate the temperature of Texas, we average the grid
points whose centers are within the state border of Texas. We
find a difference of 0.78 and 0.68C in the June–August (JJA)
and December–February seasons (DJF) between the ensem-
ble average and the ERA5 over the last 40 years. Such a bias

Supplemental information related to this paper is available at
the Journals Online website: https://doi.org/10.1175/WCAS-D-21-
0140.s1.

Corresponding author: Jangho Lee, jangho.lee.92@tamu.edu

DOI: 10.1175/WCAS-D-21-0140.1

Ó 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

L E E AND DE S S L ER 499APR-JUN 2022

Unauthenticated | Downloaded 03/19/25 02:17 AM UTC

https://www.ercot.com/files/docs/2020/11/05/SARA-FinalWinter2020-2021.pdf
https://www.ercot.com/files/docs/2020/11/05/SARA-FinalWinter2020-2021.pdf
https://www.ercot.com/files/docs/2020/11/05/SARA-FinalWinter2020-2021.pdf
https://doi.org/10.1175/WCAS-D-21-0140.s1
https://doi.org/10.1175/WCAS-D-21-0140.s1
mailto:jangho.lee.92@tamu.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


is not surprising since the climate model is not tuned to simu-
late the absolute temperature of Earth. This bias is small rela-
tive to the magnitude of the temperature variations that we
are analyzing, but we nonetheless adjust for it by adding the
offset to each grid point and time step of the model fields so
to bring the average values into agreement.

Figure 1 shows the highest 1- and 5-day average tempera-
ture during each JJA and lowest 1- and 5-day average temper-
ature during each DJF since 1981 in the ECMWF ERA5
reanalysis and bias-corrected CESM-LE. The convention in
this paper is that DJF refers to three consecutive months; for
example, DJF 2010 is December 2009 and January and Febru-
ary 2010. For the JJA maximum, the highest 5-day average
temperature was in 2011 (32.98C) and the highest 1-day tem-
perature (33.18C) was in 2020. For the DJF minimum, the
coldest 5-day (26.38C) and 1-day average temperature
(211.18C) were both in 2021.

We note that that focus of this paper is on the tempera-
ture extremes, and we see no evidence of larger biases in
the tails of the distributions. Fitting the ERA5 and CESM-
LE data to a generalized extreme value (GEV) distribution
tells us that the 2020 1-day temperature of 33.18C was a
1-in-7 year event in the ERA5, whereas it was a 1-in-5 year
event in CESM-LE. The 2021 winter 1-day temperature of
211.18C was a 1-in-55 year event in the ERA5, whereas it
was a 1-in-87 year event in the CESM-LE. The standard
deviation of ERA5 data is 2.08 and 4.98C in JJA and DJF,
and the average of standard deviation in each member of
CESM-LE is 1.8 (1 s of ensemble standard deviation values
is 0.22) and 4.0 (1 s 5 0.58). On the basis of these

comparisons, we feel confident that we can use this ensem-
ble to evaluate ERCOT’s forecasts.

3. The connection between electricity consumption and
temperature in the historical record

Historical hourly electric power consumption is obtained
from ERCOT for the period January 1996–February 2021
(http://www.ercot.com/gridinfo/load/load_hist/). The 2001 data
are not available, so our analysis excludes DJF 2001, JJA
2001, and DJF 2002. The first step is to regress population-
weighted daily average temperature against daily average
power. We use the population distribution averaged from
2000 to 2020 from CIESIN (2016) for the population weight-
ing. We use time-invariant population distribution since we
found there are negligible changes in the population distri-
bution over this period.

We perform the regression separately for each season of
each year. Figures 2a and 3a show a tight relationship between
temperature and power usage in JJA and DJF for the first and
last year of ERCOT’s record}other years (not shown) show
similarly tight relationships. This indicates that, within a season,
variations in temperature are the primary controlling factor for
power usage.

Based on our examination of the data, we use a linear fit for
JJA and a nonlinear polynomial fit (P 5 C0 1 C1T 1 C2T

1.75)
for DJF. Previous studies also discussed power usage increas-
ing with higher temperature in summer and colder temperature
in winter (Auffhammer et al. 2017; Craig et al. 2020; Franco
and Sanstad 2008; Mirasgedis et al. 2007; Murphy et al. 2019;

Temperature

Temperature

FIG. 1. Time series of seasonal maximum and minimum temperature over Texas (not population weighted): (a) JJA
maximum and (c) DJF minimum 1-day (solid line) temperature and 5-day (dashed line) temperature in ERA5, with
green and yellow areas each denoting the maximum and minimum ensemble member of 1- and 5-day temperature in
CESM-LE, and violin plots for distribution of 1- and 5-day (b) JJA maximum temperature and (d) DJF minimum
temperature in ERA5 and CESM-LE. Error bars represent the 95th and 5th percentile of the distribution, and the
dots represent the median of the distribution.
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Psiloglou et al. 2009). This was done by using everything from a
simple linear and piecewise-linear fit (Almuhtady et al. 2019;
Guan et al. 2017, 2014; Ihara et al. 2008) to complex regressions
up to 5th-degree fit (Jovanović et al. 2015). In section S1 of the
online supplemental material, we discuss in detail how we arrive
at the form of our fit.

From each year’s fit, we calculate Pref for that year, which is
power usage at a reference temperature Tref. We use a refer-
ence temperature equal to the median temperature for JJA
(28.88C) and DJF (10.98C). The time series of Pref is plotted in
Figs. 2b and 3b; this can be thought of as the seasonal average
power usage that would have occurred if the temperature
were fixed at the reference temperature. The increase in Pref

over time is due to changes in nonclimatic factors, such as
population. We then perform a linear fit to represent Pref as a
function of year [Pref(y)] (coefficients for all of the fits can be
found in section S2 of the online supplemental material).

We expect the coefficients from each year’s temperature–
power regressions (Figs. 2a and 3a) to be correlated with Pref.
For example, increases in population will change the slope of
the power–temperature relation because, as population
increases, changes in temperature will drive larger changes in
power usage. Figures 2c, 3c, and 3d show that these coeffi-
cients are indeed correlated with Pref.

Given this, we can model daily average power usage at as a
function of year and daily average temperature T. For JJA,

PJJA y,T( ) 5 Pref y( ) 1 S y( ) 3 T 2 Tref( )[ ]
, (1)

where PJJA(y, T) is the daily average power for a day in year
y with a population-weighted, daily average temperature T,

Pref(y) is the value of Pref during JJA in year y, S(y) is the
slope of the power–temperature regression in year y, and Tref

is the JJA reference temperature. Note that S was plotted in
Fig. 2c as a function of Pref, but because Pref is a function of
year we can also express S as a function of year y.

Our equation for DJF is similar to the JJA equation except
that the power–temperature relation has higher-order terms:

PDJF y,T( ) 5 Pref y( ) 1 C1 y( ) 3 T 2 Tref( )[ ]

1 C2 y( ) 3 T 2 Tref( )1:75
[ ]

: (2)

As with the JJA relation, the coefficients C1 and C2 correlate
with Pref (Figs. 3c,d), so we can also express them as functions
of year. Also remember that DJF Pref and Tref are different
from JJA Pref and Tref.

4. Prediction of future electricity consumption

Using the method described in the last section, we can pro-
duce an estimate of daily average power usage. For compari-
son with ERCOT forecasts, we convert this to dailymaximum
power (DMP), the highest hourly power demand during the
day, using a linear regression between daily maximum and
daily average power usage developed from the historical data.
The correlation between these quantities has R values of 0.99
and 0.98 in JJA and DJF and an RMS error of 1.0 and
1.1 GW, respectively.

Plugging ERA5 temperatures into Eqs. (1) and (2), we can
reproduce the historical seasonal maximum power (SMP; the
highest hourly power demand during the season) very closely

FIG. 2. (a) Scatterplot of population-weighted daily
average temperature and JJA daily average power
usage in the first and last year of ERCOT’s historical
record. The red circles denote the power at the refer-
ence temperature Pref. (b) Evolution of Pref over time.
The red dashed line is a linear trend. (c) Slope of the
temperature–power relation as a function of Pref. Each
point represents a value from a single year. The shaded
area represents the standard error of the linear fit.
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(Figs. 4a,b), with RMS differences of 1.0 and 1.5 GW for JJA
and DJF, respectively (2021 is excluded from the DJF calcula-
tion because of the blackout). This good agreement may be
surprising because we left out factors that one might have
anticipated would be important (e.g., weekday vs weekend).
We investigated these factors and found that none of them
significantly improved our ability to reproduce the observa-
tions (section S3 in the online supplemental material). We
note that this is true when averaging a large area like the state
of Texas, but other factors may be important at smaller scales,
such as a county or neighborhood.

We also have taken the CESM-LE temperatures and used
Eqs. (1) and (2) to estimate SMP for the 1996–2021 period.

The shaded regions show the range of power predicted by the
ensemble and ERCOT’s historical power demand falls comfort-
ably within the ensemble’s envelope. This result is consistent
with the fact that observed temperatures over this period fall
within the CESM-LE’s range of predicted temperatures (Fig. 1).

5. Comparison of seasonal power demand

a. Summer power demand

To evaluate ERCOT’s seasonal 2021 summer resources
assessment (https://www.ercot.com/files/docs/2021/05/06/SARA-
FinalSummer2021.pdf), we have calculated a probability distribution

FIG. 3. As in Fig. 2, but for DJF. Because we use a 1.75-degree power–temperature fit in DJF [Eq. (2)], we have two
constants, and these are plotted in (c) and (d).

FIG. 4. Time series of seasonal maximum hourly power usage: (a) JJA SMP for 1996–2020 and (b) DJF SMP for
1997–2021. The black solid line represents the historical ERCOT record, and the black dashed line represents the his-
torical power usage estimated by using ERA5 temperatures. The gray area depicts the range of power usage estimated
from the CESM-LE.
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of SMP for JJA 2021 using temperatures from the CESM-LE
from the period 2016–25 but with 2021’s Pref (Fig. 5a).

ERCOT predicted a most likely SMP of 77 GW, in good
agreement with the peak of our probability distribution.
ERCOT also predicted an extreme peak-load scenario of 80
GW, which they derived assuming that the worst-case sce-
nario is a repeat of JJA 2011 temperatures. Note that ERCOT
publicly provides no probabilistic information with which to
interpret their extreme scenarios, although in an email they
told us that it should be exceeded in 10% of the years (J. Billo
2021, personal communication). We calculate that there was a
17% chance of JJA 2021 SMP exceeding 80 GW (Fig. 5a),
suggesting that the use of limited historical temperatures
may lead to an underestimate of the occurrence of extreme
demand.

ERCOT also estimated a best case of 87 GW of power avail-
able to satisfy peak demand. A comparison of this with Fig. 5a
shows that the ERCOT grid is running with very little margin,
with 5% of the summers in the CESM-LE having an SMP
within 4.3 GW of ERCOT’s estimate of best-case available
power and 20% of summers within 7.1 GW. In such a situation,
minor but unanticipated declines in available power, such as
what happens when several power plants go offline because of
forced outages (Craig et al. 2020; Murphy et al. 2019), puts the
ERCOT grid at risk of being unable to satisfy power demand.

b. Comparison of winter power demand

We now evaluate ERCOT’s seasonal resource assessment
made right before the DJF 2021 season (https://www.ercot.
com/files/docs/2020/11/05/SARA-FinalWinter2020-2021.pdf).
We do that by comparing it with a probability distribution
of SMP for DJF 2021 that we calculated using temperatures
in the CESM-LE between 2016 and 2025, but with 2021’s
Pref (Fig. 5b). ERCOT’s most-likely SMP is 57 GW, very
close to the peak of our predicted distribution. ERCOT’s
extreme peak-load scenario is 67 GW, calculated assuming
that the worst case was that Texas would experience tem-
peratures as cold as DJF 2011’s, the most recent very cold
Texas winter.

Like their summer estimates, this extreme peak-load sce-
nario is low}we estimate that there was a 19% chance that
SMP would exceed this value. Reality provided support for
this: 2021 DJF minimum daily average population-weighted
temperatures were 3.48C colder than 2011’s, from which we
estimate that peak demand was 82 GW}about 15 GW above
ERCOT’s worst-case prediction.

ERCOT communicated to us that their estimate of DMP
during the 2021 winter storm was 76 GW (J. Billo 2021,
personal communication), 6 GW lower than our estimate.
We do not know how ERCOT comes up with their number,
and without more information about ERCOT’s method,
we cannot identify the source of the disagreement. This dif-
ference has important implications for how much margin
the ERCOT grid has. ERCOT estimates that, in the best
case, there was 83 GW of power available. If our estimate
is correct, then the ERCOT grid had essentially no margin
in DJF 2021, so that any loss of power, for example,
because of lack of weatherization of energy infrastructure,
meant that the ERCOT grid could not satisfy power
demand.

More generally, Fig. 5b shows that the ERCOT grid also
runs with very little margin in winter, just as it does in sum-
mer. For DJF 2021, we estimate that 5% of winters in the
CESM-LE had an SMP within 7.9 GW of ERCOT’s best-case
estimate of available power and 10% and 20% of winters
were within 12 and 17 GW, respectively; 1.5% of the winters
had SMP in 2021 DJF exceeding best-case available power, as
apparently happened in 2021.

6. Conclusions

One of ERCOT’s most important jobs is ensuring that
there is sufficient power available to the Texas electrical grid.
In support of this objective, ERCOT makes seasonal assess-
ments of future power demand. However, ERCOT does not
use modern climate forecasting tools to estimate climate vari-
ability when making these forecasts. Instead, they exclusively
use the recent historical climate record.

In this paper, we describe an empirical method to estimate
the impacts of weather variability on power demand. We then
use output from an ensemble of climate model runs (the
CESM-LE) to estimate the impact of climate variability on
ERCOT’s forecasts. We find that ERCOT’s exclusive use of

FIG. 5. Probability distribution of seasonal hourly maximum
power usage in (a) JJA and (b) DJF 2021, predicted by the CESM-
LE. Calculations use temperatures from 2016 to 2025 and Pref for
2021. Gray and black vertical lines represent the ERCOT’s sea-
sonal forecast for extreme peak-load and best-case available power,
respectively.
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historical temperatures means that they underestimate the
worst-case scenarios. In 2021, we estimate a 17% and 19%
chance that Texas temperature could have caused the power
demand to exceed ERCOT’s extreme peak-load scenarios,
respectively. After the fact, we find that 2021 DJF maximum
power demand exceeded ERCOT’s extreme peak-load sce-
nario by 15 GW or 22%.

JJA in 2021 was not unusually hot in Texas. Maximum load
in JJA 2021 was 74 GW, which is lower than ERCOT’s
extreme peak-load scenario (80 GW). The CESM-LE tells us
that JJA 2021 was at the lower end in the distribution of possi-
ble summertime temperatures. There was 88% chance that
summer with higher temperature have happened, and 17%
chance that it would have exceeded ERCOT’s extreme peak-
load scenario.

ERCOT disputes our estimate of peak demand during the
2021 DJF (82 GW)}they estimate demand was 76 GW.
Resolution of this difference is important because it has
implications for how robust the ERCOT grid is when power
plants unexpectedly go offline, but ERCOT’s model and
underlying data are not publicly available, and so we are
unable to identify the source of this disagreement. ERCOT
should be transparent about their forecasts and should
make their forecast model public so researchers can better
evaluate their method.

In both summer and winter, we find that ERCOT’s electricity
grid has little spare capacity. According to ERCOT, best-case
power available in 2021 is in the mid-80s of gigawatts. We find
that power demand can get close to that limit in both summer
and winter. That means that unforeseen problems that reduce
supply even slightly below the best case can lead to the power
grid being unable to satisfy power demand.

Last, we encourage ERCOT to make probabilistic forecasts
of temperature using modern tools, like climate model ensem-
bles. ERCOT’s insistence on using a relatively short historical
record means they are underestimating climate variability,
leading to underestimates of the most extreme power demand
forecasts. Using a longer historical record would be a poor
solution since it would ignore the fact that the climate is
changing.
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